Checchi et al. BMC Nutrition (2022) 8:92 41
https://doi.org/10.1186/540795-022-00563-2 B M C N Utrltlon

RESEARCH Open Access

: ®
Can we predict the burden of acute ey

malnutrition in crisis-affected countries?
Findings from Somalia and South Sudan

Francesco Checchi'”, Séverine Frison', Abdihamid Warsame', Kiross Tefera Abebe?, Jasinta Achen?,
Eric Alain Ategbo? Mohamed Ag Ayoya®, Ismail Kassim?, Biram Ndiaye® and Mara Nyawo*

Abstract

Background: Sample surveys are the mainstay of surveillance for acute malnutrition in settings affected by crises
but are burdensome and have limited geographical coverage due to insecurity and other access issues. As a possible
complement to surveys, we explored a statistical approach to predict the prevalent burden of acute malnutrition for
small population strata in two crisis-affected countries, Somalia (2014-2018) and South Sudan (2015-2018).

Methods: For each country, we sourced datasets generated by humanitarian actors or other entities on insecurity,
displacement, food insecurity, access to services, epidemic occurrence and other factors on the causal pathway to
malnutrition. We merged these with datasets of sample household anthropometric surveys done at administrative
level 3 (district, county) as part of nutritional surveillance, and, for each of several outcomes including binary and
continuous indices based on either weight-for-height or middle-upper-arm circumference, fitted and evaluated the
predictive performance of generalised linear models and, as an alternative, machine learning random forests.

Results: We developed models based on 85 ground surveys in Somalia and 175 in South Sudan. Livelihood type,
armed conflict intensity, measles incidence, vegetation index and water price were important predictors in Somalia,
and livelihood, measles incidence, rainfall and terms of trade (purchasing power) in South Sudan. However, both
generalised linear models and random forests had low performance for both binary and continuous anthropometric
outcomes.

Conclusions: Predictive models had disappointing performance and are not usable for action. The range of data
used and their quality probably limited our analysis. The predictive approach remains theoretically attractive and
deserves further evaluation with larger datasets across multiple settings.

Keywords: Malnutrition, Acute malnutrition, Wasting, Undernutrition, South Sudan, Somalia, Food insecurity, Crisis,
Humanitarian, Prediction, Statistical model

Background

In settings affected by crises due to armed conflict,
community violence, displacement and/or food inse-
curity, acute malnutrition is a prominent public health
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among children is also a key summative indicator of
crisis severity, as it reflects the wider situation of food
security, livelihoods and the public health and social
environment [1]. For the purpose of this paper, and in
accordance with current Unicef guidance, we refer to
acute malnutrition (also commonly known as wasting)
as the occurrence of two partially overlapping presenta-
tions: marasmus, characterised by a recent and severe
weight loss, and the rarer but more lethal oedematous
form (kwashiorkor). Anthropometric indices includ-
ing weight-for-height or -length, middle-upper arm
circumference (MUAC) and presence of bilateral pit-
ting oedema may be combined into continuous indi-
cators (e.g. weight-for-height/length Z-score, relative
to the mean of a well-nourished reference population:
WHZ) or dichotomised based on thresholds to clas-
sify children as severely or moderately acutely mal-
nourished (SAM, MAM), and, at the population level,
compute prevalence estimates [2]. Such information
helps to assess progress towards national and global
targets, identify an appropriate package of food secu-
rity and nutritional services, estimate resources needed
(e.g. treatment caseload), monitor the performance of
services and detect changes in crisis severity as part of
early warning systems such as the integrated food secu-
rity phase classification (IPC) [3-5].

Cross-sectional anthropometric surveys among chil-
dren 6 to 59 months old (mo) are an important compo-
nent of nutritional surveillance in crisis settings, along
with facility-based and programmatic data [6]. Over the
past decade, considerable progress has been made to
standardise methods and analysis of these surveys. In
particular, the Standardised Monitoring and Assessment
of Relief and Transitions (SMART) project [7] provides
generic study protocols and aides for survey design,
training and quality control, as well as the bespoke Emer-
gency Nutrition Software for sample selection, data entry
and analysis. SMART surveys, usually implemented at a
small geographic scale (e.g. districts or individual camps),
are the most common population-based method to
measure malnutrition burden in humanitarian response.
However, SMART surveys are somewhat burdensome
in terms of human and financial resources, require sev-
eral weeks to plan, implement and report on, and may
have limited geographic reach due to insecurity or other
access constraints, thereby resulting in potentially biased,
untimely, and/or insufficiently granular information.
Otherwise put, surveys alone may not adequately sup-
port early detection of deteriorating situations and effi-
cient resource allocation [8]. More recently, COVID-19
related restrictions temporarily curtailed SMART sur-
vey implementation, just as the pandemic was expected
to contribute to a projected doubling in the global

Page 2 of 20

population facing food insecurity crisis conditions, and,
consequently, a substantial increase in acute malnutrition
burden [9].

To complement small-scale nutrition surveys and other
surveillance data, and in order to reduce the burden of
repeated surveys while also generating timely informa-
tion on a more regular basis at operationally useful geo-
graphical resolution, we explored the performance of
predictive statistical models of acute malnutrition burden
in Somalia and South Sudan, two crisis-affected coun-
tries prominently affected by service access constraints,
food insecurity and malnutrition.

Methods
Study design
We used a combination of existing datasets collected for
programmatic purposes by humanitarian and govern-
ment actors (see below) to develop and evaluate coun-
try-specific models to predict various anthropometric
indicators at the resolution of one month and a single
administrative level 2 unit (district in Somalia, county in
South Sudan), hereafter referred to as a ‘stratum’
Drawing from an a priori causal framework of factors
leading to acute malnutrition (Additional file 1, Figure
S5), we identified potential predictor variables collected
at the desired resolution and merged these with individ-
ual child-level data from SMART surveys designed to be
representative of single strata. We fitted various candi-
date models to a training data subset, and evaluated their
predictive accuracy on a validation data subset, as well as
on cross-validation.

Study population and timeframe

For Somalia (including Somaliland and Puntland), we
sourced predictor and anthropometric survey data from
January 2014 to December 2018 inclusive. During this
period, Somalia’s population rose from about 12.8 M to
14.5 M [10]. Surveys were done in 22 (29%) of Somalia’s
75 districts. For South Sudan, the analysis spanned Janu-
ary 2015 to April 2018, and featured surveys from 63
(80%) of the country’s 79 counties, as per 2013 adminis-
trative borders. South Sudan’s population declined from
10.2 M to 9.7 M during the period, reflecting refugee
movements to neighbouring countries [11].

Data sources

Anthropometric surveys

We accessed reports and raw datasets of 177 SMART sur-
veys from South Sudan (two were excluded due to very
unusual values, leaving 175 analysis-eligible), and 167
from Somalia (82 were excluded: 76, mainly done before
2016, were representative of livelihood zones rather than
districts, and thus could not be coupled with predictor
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data; five appeared to have followed a non-representative
sampling design; one had no available dataset, leaving
85 analysis-eligible). For each survey, we inspected the
report to identify any possible bias sources and, in par-
ticular, any reported restriction of the effective sampling
frame due to insecurity or inaccessibility (e.g. if a report
stated that two out of 12 boma, South Sudan’s admin-
istrative level 3 unit, could not be included in the sam-
ple, we approximated the sampling coverage as 10/12 =
83%). We also rescaled the ENA software-reported qual-
ity score for the survey (a composite of several indicators
including proportion of outlier values, digit preference
and properties of the distribution of observed values,
ranging from 0% =best to 50% =worst [12]) to a 0—100%
range, where best=100%. We reanalysed all surveys by
converting the raw anthropometric readings (weight,
height or length, age, MUAC) into z-score indices as
per the World Health Organization 2006 standardised
anthropometric distributions using the anthro package
in R, flagging and excluding all observations with miss-
ing values,< >5 z-scores from the mean and/or outside
the allowed age range (6-59mo). Lastly, we classified all
children into severe acute malnutrition (SAM) or global
acute malnutrition (GAM) according to two alternative
definitions: (i) bilateral oedema and/or weight-for-height
(WHZ) <3Z (SAM) or<2Z (GAM); (ii) bilateral oedema
and/or MUAC<115 mm (SAM) or<125 mm (GAM)
[13]. We fitted generalised linear models (binomial for
SAM and GAM, gaussian otherwise) with standard
errors adjusted for cluster design to verify concordance
with point estimates and 95% confidence intervals (CI)
contained in the survey reports.

Predictors

We developed a causal framework of acute malnutrition
(Additional file 1, Figure S5) based on existing evidence
and plausibility reasoning. We used this framework to
identify factors potentially predicting the outcomes of
interest. We searched for candidate predictor data rep-
resenting these factors online and through contacts with
humanitarian actors in both Somalia and South Sudan,
the main desirable characteristics of datasets being
stratification by stratum and month, and that data be
generated routinely for programmatic purposes, i.e. real-
istically available without further primary data collection.
Most datasets had already been sourced as part of simi-
lar projects to retrospectively estimate mortality in both
countries [10, 11]. Candidate predictors for both Somalia
and South Sudan are detailed in Tables 1 and 2, respec-
tively. Each predictor dataset was subjected to data clean-
ing to remove obvious errors. We excluded predictors
that were missing for > 30% of strata or > 30% of months.
Remaining completeness problems were resolved
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through interpolation (humanitarian presence), manual
imputation (missing market data points were attributed
a weighted average of the geographically nearest mar-
ket’s value and the mean of all other non-missing mar-
kets, with 0.7 and 0.3 weights respectively) and automatic
imputation using the mice R package [14] (water price,
SAM and MAM treatment quality). To reduce stochas-
tic noise in the time series, we computed three-month
window rolling means for all time-varying predictors
and applied moderate local spline smoothing to terms
of trade or market price variables. Where appropriate,
we computed per-population rates using stratum-month
population figures previously estimated as part of mor-
tality estimation projects for each country. Briefly, these
combine available base estimates (census projections in
South Sudan; quality-weighted averages of four alterna-
tive sources in Somalia), natural growth assumptions and
data on refugee as well as internal displacement to and
from each stratum, by month.

While for both countries data on food security
and nutritional therapeutic services were available
(Tables 1 and 2) and moderately predictive (data not
shown), we ultimately decided to exclude them as can-
didate predictors for two reasons: (i) we considered that
improved prediction could plausibly result in better tar-
geting of these humanitarian services, which in turn
would result in improved nutrition, a reverse-causal
effect whose future size the model might fail to predict;
and (ii) we assumed that end-users would benefit from a
model that could be used to predict malnutrition burden
even where none of these services were available, e.g. due
to access constraints.

Predictive models
We explored two prediction approaches, as follows.

Generalised linear modelling
We first split the data by period into a training set (con-
sisting of approximately the chronologically first 70% of
the data) and a ‘holdout’ (i.e. validation) set (the most
recent 30%). For each anthropometric indicator, we fit-
ted generalised linear models (GLM) to individual child
observations in the training dataset, with robust stand-
ard errors to account for the cluster sampling design of
most surveys, a quasi-binomial distribution for binary
outcomes (SAM, GAM) and a gaussian distribution for
continuous outcomes (WHZ, MUAC), which we did not
transform as they were normally distributed. We speci-
fied model weights as the product of survey quality score
and survey sample coverage.

After visual inspection, we categorised continuous pre-
dictors, and selected categorical versus continuous ver-
sions of these based on linearity of the association and
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the smallest-possible Chi-square (for binary outcomes) or
F-test (continuous outcomes) p-value testing whether the
univariate model provided better fit than a null model.
We also used this p-value to select among candidate lags
for each predictor; however, we modelled climate varia-
bles (rainfall, Normalised Difference Vegetation Index or
NDVI) as either the means of the two trimesters, or the
mean over the semester prior to each survey observation.
We then fitted models consisting of all possible combina-
tions of predictors, and shortlisted the best 10% based on
predictive accuracy (lowest mean square error, MSE) of
model predictions, relative to observations in the hold-
out dataset. Predictions were compared with observa-
tions by first aggregating all individual-child predictions
as yielded by the models to the stratum-month level (as a
mean SAM or GAM prevalence, or the mean of continu-
ous anthropometric outcomes, in that stratum-month).

We manually selected the best fixed effects model
among these based on relative accuracy on holdout data,
accuracy on external data simulated through leave-one-
out cross-validation (LOOCYV) [18], the plausibility of
observed associations, and model parsimony (while the
latter characteristic is relatively unimportant for predic-
tion, in practice we wished to avoid users of the model
having to collect a large amount of predictor data). Lastly,
we explored plausible two-way interactions.

We also fitted mixed models (with stratum as a ran-
dom effect, given that in both countries surveys were
repeated in many districts / counties). The latter, how-
ever, offered inconsistent accuracy advantages over fixed
effects models on either cross-validation or holdout data-
sets. Furthermore, we assumed that end users would be
most interested in predicting malnutrition prevalence in
hard-to-survey districts / counties, i.e. where no a priori
random effects would be estimable. For these reasons, we
discarded mixed models altogether.

Machine learning

After splitting data as above, we used the ranger package
[19] to grow random forest (RF) regression models on the
training dataset, aggregated at stratum-month level: this
approach makes minimal assumptions about data struc-
ture; briefly, it partitions the data according to various
randomly generated ‘trees, where each node is defined by
a particular value of one of the predictor variables, with
branches being the resulting split in the data; the ‘depth’
of each tree is defined by the number of variables that are
used to create nodes; randomness is introduced by the
choice of variables to build any given tree, values at which
splits occur, and the order of variables in the tree struc-
ture. The distribution of the outcome arising from the
partitions in each tree is compared to the observed data
to determine accuracy. RF averages predictions across
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a large ensemble of trees. We grew RFs with 1000 trees,
using all candidate predictors as above, and computed
prediction CIs using a jack-knife estimator [20].

Performance evaluation

For both the GLM and RF approach, we present various
metrics of predictive accuracy, for estimation: (i) effective
coverage, defined here as the proportion of stratum-
months for which the predicted point estimate fell within
the 95% or 80%Cls of the observed data; (ii) relative bias,
defined as & iz’f %, where 7 is the number of stra-
tum-months, ¥; the prediction and y; the observation for
stratum-month i; and (iii) relative precision, namely the
mean ratio of predicted stratum-month one-sided
95%Cls to point estimate; and for classification: (iv) sen-
sitivity and (v) specificity of predictions against SAM or
GAM prevalence thresholds commonly used in humani-
tarian response, and adopting observed point estimates
as the gold standard. While it is recommended to avoid
over-reliance on thresholds and instead examine changes
in malnutrition burden over time in light of contextual
factors [6], in practice these arbitrary thresholds, intro-
duced about two decades ago [21], are considered when
the baseline is unclear to make initial decisions on the
most appropriate nutritional and food security interven-
tions package (e.g. management of SAM only versus of
SAM and MAM,; targeted versus ‘blanket’ of generalised
food distributions / cash transfers).

For brevity we present only best models for ‘now-cast-
ing’ (i.e. prediction of malnutrition based on data col-
lected up to the present). We also explored models for
forecasting malnutrition 3 months into the future (i.e.
prediction based on data collected up to 3 months previ-
ously), but found that these had low performance (data
not shown). All analysis was done using R software [22]
through the RStudio [23] platform.

Results

Anthropometric survey patterns

Details of eligible surveys from Somalia are reported in
Table 3 and Fig. 1. Most surveys were done in 2016 and
2018 and the majority relied on multi-stage cluster sam-
pling, with a fairly constant sample size range over time.
The highest SAM and GAM prevalence, but also the low-
est quality scores, were noted in 2017, during a drought-
triggered food insecurity crisis. In South Sudan, all
surveys relied on cluster sampling, and there was mini-
mal change in average SAM and GAM prevalence over
time; quality scores and the proportion of flagged obser-
vations suggested higher survey quality in South Sudan
than in Somalia (Table 4, Fig. 2).
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Table 3 Characteristics of analysis-eligible anthropometric surveys from Somalia. Medians are reported unless noted. Numbers in

parentheses indicate the interquartile range

Characteristic Overall 2013 2014 2015 2016 2017 2018

Eligible surveys (N) 85 3 4 2 25 6 45

Percentage using 85.9 100.0 75.0 100.0 80.0 100.0 86.7

a cluster sampling

design

Sample size 640 (265 to 1075) 534 (510to 630) 668 (641 to 833) 683 (501 to 865) 636 (265 t0 886) 915 (509 to 1018) 630 (420 to 1075)

GAM prevalence 148 (5.6t036.6) 126(871t016.7)
(weight-for-height
+ oedema), %

SAM prevalence 3.2(061t09.2) 3.0(2.8t04.1) 19(0.6t04.7)
(weight-for-height
+ oedema), %
GAM prevalence
(MUAC + oedema),

%

SAM prevalence
(MUAC + oedema),
%

Percentage of
flagged observa-
tions

76(08t0267) 83(3.7t0120) 3.1(14t06.8)

1.1(0.1106.8) 22(03t026) 06(03to1.1)

0.7 (0.0t0 4.8) 02(0.2t01.0)  0.0(0.0t024)

114 (841t021.6)

11.8(86t015.1) 156(7.1t0272) 214(175t0366) 144 (561t021)

30(221t039) 39(0.6t064) 73 (441092) 30(1.3t064)
5.7(201t093) 74(081t0205) 180(9.1t0226) 76(1.31t026.7)
1.6 (0.6 to 2.6) 1.3(0.2t044) 30(0.6t06.8) 1.1(0.1t0 3.6)
08(0.2t0 1.4) 0.7 (0.0to 3) 14(1.1t0 26) 0.7 (0.0t0 4.8)

Performance of Somalia models

GLM model coefficients and performance metrics for
Somalia are shown in Table 5: odds ratios, OR<1 and lin-
ear coefficients >0 indicate a protective effect, and vice
versa. One predictor (livelihood) consistently featured
in the most predictive models (displaced and pastoralist
livelihoods were generally associated with better anthro-
pometric status than for agriculturalists). Armed conflict
intensity, measles occurrence over the previous trimes-
ter, terms of trade, NDVI over the previous semester and
average market price of water were useful predictors for
some but not all anthropometric outcomes. Generally,
predictive performance was low: models yielded mostly
upward-biased predictions that fell within the observed
survey 95%Cls for only 17% to 80% of stratum-months,
depending on the outcome; while denominators were
very small, only the model for GAM (WFH + oedema)
reached a moderate combination of sensitivity and speci-
ficity to classify prevalence as per the 15% threshold.
Graphs of predictions versus observations support this
pattern; Fig. 3 shows results for SAM (WFH + oedema),
while remaining graphs are in the Additional file 1.

RF models had similar performance to the GLM
approach. For GAM (WFH + oedema: binary outcome),
relative bias, relative precision and 95%CI coverage
were +10.1% and+31.6%,+23.0% and+17.7%, and
59.6% and 56.7% on LOOCYV and holdout data, respec-
tively, with a sensitivity and specificity on LOOCV of

72.0% and 59.1% for the 15% prevalence threshold. The
most important variables for prediction were measles
incidence, NDVI, terms of trade and water price (Addi-
tional file 1). For WFH (continuous outcome), relative
bias, relative precision and 95%CI coverage were +7.1%
and 4 29.5%, +19.1% and £ 13.1%, and 57.4% and 30.0%
on LOOCYV and holdout data, respectively (Additional
file 1).

Performance of South Sudan models

Table 6 shows GLM predictions for South Sudan. Here,
the most significant associations were with livelihood
type, total rainfall and terms of trade. Predictive per-
formance was also low (Fig. 4), with coverage no better
than 82% across all outcomes and no instance of high
sensitivity and specificity for classification.

RF models had far better fit to the training data than
GLMs, but performed similarly on cross-validation and
holdout data. The most important variables were liveli-
hood, terms of trade, uptake of measles vaccination and
total rainfall (Additional file 1).

Discussion

In this study we combined a range of previously col-
lected, anthropometric household survey data with a
range of potential population-level predictor datasets
quantifying theoretical factors causally associated with
acute malnutrition burden in crisis settings, to explore
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Table 4 Characteristics of analysis-eligible anthropometric surveys from South Sudan. Medians are reported unless noted. Numbers in

parentheses indicate the interquartile range

Characteristic Overall 2015 2016 2017 2018
Eligible surveys (N) 175 55 57 52 11
Percentage using a cluster sampling design 100.0 100.0 100.0 100.0 100.0
Sample size 530 532 523 526 545

(207 to 949) (251 to 790) (32510 881) (207 to 949) (466 to 768)
GAM prevalence (weight-for-height + oedema), % 17.8 17.8 18.2 173 14.2

(5.3t035.5) (59t033.7) (5.3t034.6) (7.5t035.5) (59t025.7)
SAM prevalence (weight-for-height 4+ oedema), % 38 41 39 38 36

(0410 12.0) (0410 10.6) (1.0t0 11.0) (0610 12.0) (09t07.1)
GAM prevalence (MUAC + oedema), % 8.6 6.9 9.3 9.1 7.5

(0.81026.3) (0.8t022.5) (2410 19.5) (3.61026.3) (2810234)
SAM prevalence (MUAC + oedema), % 1.2 1.2 1.2 1.1 0.9

(0.0to7.3) (0.0t0 4.8) (021t07.3) (02t07.2) (0010 2.9)
Percentage of flagged observations 04 0.5 0.6 04 03

(0.0t04.3) (0.0t024) (0.0t04.3) (0.0t03.9) (0.0to 1.4)

whether key quantities such as SAM or GAM preva-
lence could be estimated through prediction, as a com-
plement to ground surveys. Resulting predictive models
based on either GLM or machine learning approaches
had disappointing performance in both Somalia and
South Sudan across several anthropometric outcomes.
Generally, predictive accuracy was better for outcomes
based on WFH than on MUAC, but even for the former
our models would not, in our opinion, provide actionable
information.

Models to predict acute malnutrition risk at the indi-
vidual or household level exist [24, 25]. While we did not
search the literature systematically due to insufficient
resources, we are aware of only two other population-
level predictive studies. Osgood-Zimmerman et al. [26]
produced gridded maps of various anthropometric indi-
cators for all of Sub-Saharan Africa based on periodic
countrywide surveys (e.g. Demographic and Health Sur-
veys) and >20 geospatial remotely sensed or previously
estimated predictors; Mude et al. [27] predicted with
reasonable accuracy MUAC across time and space in
northern Kenya based on village-level data collected for
food security surveillance by the Arid Lands Resource
Management Project, with predictors including the char-
acteristics of observed MUAC data themselves, cattle
herd dynamics, extent of food aid, climate and season.
At least one further research project is ongoing (https://
www.actionagainsthunger.org/meriam). Bosco et al. [28]
have used geospatial and remotely sensed covariates to
map stunting prevalence, while Lentz et al. [29] have also
demonstrated the potential of a GLM-based approach for
predicting food insecurity in Malawi. We have previously
used the same datasets as in this study to develop reason-
ably predictive models of population-level death rate (a

farther-downstream and thus potentially even more mul-
tifactorial outcome), albeit only for retrospective estima-
tion [10, 11].

Given the above, we expected better predictive perfor-
mance. It is plausible that additional data on factors caus-
ally associated with acute malnutrition, including infant
and young child feeding practices, use of food security
coping strategies, dietary diversity, access to water, sani-
tation and hygiene services and health service utilisation
would have improved prediction: these data are some-
times generated in crisis settings through cross-sectional
surveys, but to our knowledge are not typically available
at the granular level required for our predictive problem.
It is also likely that problems with available data quality
constrained model accuracy. Non-differential error or
misclassification arising from measurement problems
(e.g. imprecise child anthropometric measurements) and
data entry errors would generally reduce model good-
ness-of-fit and bias estimated associations towards the
null: observed-versus-predicted graphs generally sug-
gest ‘regression dilution’ [30], a phenomenon whereby
predictions align around an underestimated linear slope,
consistent with high noise in predictor variables. Dif-
ferential error may also have affected model accuracy in
various ways. For example, the predictive value of certain
variables would have been dampened if anthropometric
surveys had systematically underestimated acute malnu-
trition in the very locations where those predictors exhib-
ited their most extreme values, as might be plausible for
surveys done in very remote, insecure locations and thus
constrained by time, local staff competency or the need
to exclude unreachable communities from the effective
sampling frame. We attempted to mitigate such bias by
down-weighting lower-quality surveys with evidence of
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Fig. 3 GLM-predicted versus observed SAM (WFH 4 oedema) prevalence, Somalia, by district-month, on training data, LOOCV and holdout data.
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denote commonly used SAM prevalence thresholds

sampling frame selection bias, but models without this
weight were not substantively different (data not shown).
Pragmatically, these data quality limitations illustrate the
challenges of prediction based on data not collected for
research.

Our study aim was not to explore associations: as
such, we focussed on accuracy and, for example, ignored
significant effect modifications that did not improve
prediction. Observed GLM associations and variable
importance metrics for RF are nonetheless informa-
tive. Measles incidence and rainfall or NDVI had plausi-
ble associations with most outcomes in both countries,
while water price had a very strong association in Soma-
lia. Terms of trade, however, were important in South
Sudan but marginal in Somalia. We saw inconsistent
associations with forced displacement or armed conflict
intensity, though these have been documented elsewhere
[31], and, critically, rainfall abnormalities (as opposed to
total precipitation) were not an important predictor in
any model. A recent review of 90 studies concludes that
acute malnutrition is understudied relative to chronic
malnutrition (stunting); the review also finds that, while
adequate rainfall during the growing season has been
associated with less acute malnutrition, relationships
with drought and armed conflict are inconclusive [32].
Indeed, the interplay of unusual climate events and
armed conflict has proved challenging for food security
prediction [33]. More generally, our and others’ find-
ings underscore the context-specific complexity of causal
pathways leading to acute malnutrition. They may also
reflect the relative noisiness of different datasets, i.e. their
accuracy.

Aside from data limitations, our analysis does not thor-
oughly explore available predictive methods. Among

GLM-based approaches, it is possible that different trans-
formations of outcomes or predictors, as well as methods
to identify the most informative variables, such as lasso
regression, could have yielded improved performance.
Among machine learning methods, boosted regression
trees could have reduced bias. We note however that
these methods would need to yield very considerable
improvements over those we used in order to produce
useful predictions.

Conclusions

This analysis suggests that predictive modelling for
acute malnutrition burden in crisis settings may not be
an immediately viable alternative to ground surveys, at
least in the countries studied. Given the potential bene-
fit of such an approach [5], we nonetheless recommend
further study, possibly in other settings, using larger
datasets and more advanced machine learning meth-
ods (boosted regression trees, support vectors, neural
networks) and/or Bayesian frameworks. To facilitate
such research, as well as other publicly beneficial analy-
ses, humanitarian actors should systematically make
key datasets, including but not limited to anthropo-
metric surveys, publicly available in curated, accessible
form [34]. These include, but are not limited to, service
data from different sectors (e.g. outpatient consulta-
tions; vaccination coverage; anthropometric screening
data among outpatient children and pregnant women;
admissions and exit outcomes for management of acute
malnutrition; water availability and quality; coverage of
excreta disposal; food security service beneficiaries and
Kcal equivalents); market data (e.g. staple prices); mor-
bidity and mortality surveillance data; cross-sectional
surveys measuring food security, dietary diversity and
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Fig. 4 GLM-predicted versus observed SAM (WFH 4 oedema) prevalence, South Sudan, by district-month, on training data, LOOCV and holdout
data. Shaded channels indicate an absolute deviance of predictions of up to 1% (darkest shade), £2% and £3% (lightest shade). Vertical dotted

infant and young child feeding practices; protection
assessments; surveys of perceptions of affected popu-
lations; humanitarian presence and activity who-does-
what-where matrices; and alternative data on insecurity
(e.g. incidents monitored by the UN country team) or
humanitarian access (e.g. road safety). A simple prin-
ciple could be to publish all data barring any whose
public availability could place humanitarian actors or
affected people at unacceptable risk; aggregation and
anonymisation may mitigate such risks. Lastly, any
studies to date to predict population-level nutrition
burden should be synthesised to identify actionable evi-
dence and guide further analysis.
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predicted versus observed SAM (MUAC + oedema) prevalence, Somalia,
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Somalia, by district-month, on training data, LOOCV and holdout data.
Shaded channels indicate different absolute deviance of predictions.
Vertical dotted lines denote commonly used GAM prevalence thresh-
olds. Figure S8. GLM-predicted versus observed GAM (MUAC + oedema)
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lute deviance of predictions. Vertical dotted lines denote commonly used
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out data. Shaded channels indicate different absolute deviance of predic-
tions. Vertical dotted lines denote potentially useful thresholds. Figure
$13. GLM-predicted versus observed SAM (MUAC + oedema) prevalence,
South Sudan, by district-month, on training data, LOOCVY and holdout
data. Shaded channels indicate different absolute deviance of predictions.
Vertical dotted lines denote commonly used SAM prevalence thresh-
olds. Figure S14. GLM-predicted versus observed GAM (WFH + oedema)
prevalence, South Sudan, by district-month, on training data, LOOCV and
holdout data. Shaded channels indicate different absolute deviance of
predictions. Vertical dotted lines denote commonly used GAM prevalence
thresholds. Figure S15. GLM-predicted versus observed GAM (MUAC +
oedema) prevalence, South Sudan, by district-month, on training data,
LOOCV and holdout data. Shaded channels indicate different absolute
deviance of predictions. Vertical dotted lines denote commonly used
GAM prevalence thresholds. Figure S16. GLM-predicted versus observed
mean WFH, South Sudan, by district-month, on training data, LOOCV and
holdout data. Shaded channels indicate different absolute deviance of
predictions. Vertical dotted lines denote potentially useful thresholds. Fig-
ure S17. GLM-predicted versus observed mean MUAC, South Sudan,

by district-month, on training data, LOOCV and holdout data. Shaded
channels indicate different absolute deviance of predictions. Vertical
dotted lines denote potentially useful thresholds. Table S8. Performance
of random forest models in South Sudan, by acute malnutrition outcome.
Figure S18. RF-predicted versus observed GAM (WFH + oedema)
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prevalence, South Sudan, by district-month, on training data, LOOCV and
holdout data. Shaded channels indicate different absolute deviance of
predictions. Vertical dotted lines denote commonly used GAM prevalence
thresholds. Figure S19. RF-predicted versus observed mean WFH, South
Sudan, by district-month, on training data, LOOCV and holdout data.
Shaded channels indicate different absolute deviance of predictions. Verti-
cal dotted lines denote potentially useful thresholds.
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