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Abstract 

Background Micronutrient deficiencies from malabsorption, gut infections, and altered gut barrier function are 
common in children living with the human immunodeficiency virus (CLHIV) and may worsen with severe acute 
malnutrition (SAM). Exploratory data of baseline zinc and selenium levels and changes over 48 weeks in children living 
with HIV by nutritional status are presented.

Methods Zinc, selenium, serum protein and albumin levels measured at study entry and over 48 weeks were com‑
pared between children aged 6 to < 36 months who were living with HIV and had SAM or mild malnutrition‑normal 
nutrition. Children with SAM were enrolled after 10–18 days of nutritional rehabilitation. Two‑sided t‑tests were used 
to compare levels and changes in levels of micronutrients and proteins by nutritional status.

Results Fifty‑two participants, 25 with and 27 without SAM, of median (Q1,Q3) age 19 (13,25) and 18 (12,25) months 
respectively, were enrolled. Zinc deficiency was present at entry in 2/25 (8%) of those who had SAM. Mean (SD) base‑
line zinc levels were [52.2(15.3) and 54.7(12.0) µg/dL] for the SAM and non‑SAM cohorts respectively while selenium 
levels were similar [92.9(25.0), 84.3(29.2) µg/L]. Mean changes of zinc and selenium from study entry to week 48 were 
similar between the children with and without SAM. There was no significant difference between baseline protein 
levels [75.2(13.2), 77.3(9.4) g/L] and the mean change from study entry to 48 weeks was also similar between the two 
groups; with a mean difference of 4.6 g/L [95% CI, (‑2.4,11.6)].

Children with SAM compared to those without had significantly lower serum albumin levels at study entry with simi‑
lar levels at 48 weeks.

Conclusions Children with severe malnutrition who were initiated/switched to zidovudine/lamivudine/boosted lopi‑
navir following 10 to 18 days of nutritional rehabilitation showed normal baseline levels of selenium and zinc, and had 
comparable selenium levels after 48 weeks. There was a strong positive correlation in entry and week 48 selenium 
levels within each cohort and for zinc in the non‑SAM cohort. These data support the current WHO recommended 
approach to management of severe malnutrition in CLHIV who are initiated on combination antiretroviral treatment.
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Introduction
Malnutrition underlies nearly 50% of deaths in children 
below five years of age. Most of these deaths result from 
the severe form of acute malnutrition (SAM) which pre-
sents as both the edematous and non-edematous forms 
[1]. Around one third of children hospitalized for SAM 
in sub-Saharan Africa are living with HIV [2]. Most 
childhood mortality in resource-limited settings results 
from infectious diseases such as diarrhea, pneumonia, 
and bacterial sepsis and the vicious cycle of malnutri-
tion and infection is well recognized [3, 4]. HIV infection 
increases the body’s energy requirements while it reduces 
food intake and decreases the body’s ability to digest and 
absorb nutrients leading to malnutrition which in turn 
accelerates progression of HIV disease [3]. Micronutri-
ent deficiencies associated with HIV [5] may contribute 
to the pathogenesis of HIV infection through increased 
oxidative stress and compromised immunity [6]. Without 
nutritional interventions to increase resistance to infec-
tion and disease, improve energy and growth, and achieve 
a positive response to antiretroviral therapy, CLHIV who 
have SAM are likely to have nutrient malabsorption and 
poor outcomes.

Current World Health Organization (WHO) guide-
lines for treatment of SAM include antibiotics for pre-
sumed underlying infections, electrolyte replacement, 
and nutritional rehabilitation using WHO therapeutic 
foods for macronutrients and micronutrients replace-
ment. The WHO rehabilitation guidelines do not differ-
entiate by HIV status and starts with stabilization using 
a low calorie therapeutic enhanced milk-based for-
mula, F-75 (75 kcal and 0.9 g protein per 100 mL) then 
advances to rehabilitation using another milk-based for-
mula F-100 (100  kcal and 2.9  g protein per 100  mL) or 
ready-to-use therapeutic food (RUTF) to achieve energy 
intake of approximately 200  kcal/kg/day once there is 
clinical improvement and return of appetite [7]. F-75 and 
F-100 contain 2.0 and 2.3 g zinc per 100 mL respectively, 
but no added selenium, while RUTF typically contains 
11–14 mg zinc and 20–40 µg selenium and 520–550 kcal 
of energy per 100 g sachet. Mildly malnourished CLHIV 
may require nutritional supplementation as they may 
have increased losses of nutrients because of malabsorp-
tion and secondary infections. WHO recommends that 
calories should be increased by 10% for a child living with 
asymptomatic HIV, 20–30% with chronic illness, and 
50–100% with severe malnutrition, until weight is recov-
ered [8].

Micronutrient deficiencies are common in children 
living in low resource settings and may compound the 
effects of HIV disease [9]. A 2013 Cochrane review on 
micronutrient supplementation for CLHIV concluded 
that vitamin A and zinc supplements are safe and recom-
mended trials on single supplements of vitamin D, zinc, 
or selenium to contribute to the evidence base of reduc-
ing HIV related mortality and morbidity [9].

Selenium is a key component of human selenopro-
teins that are mostly involved in antioxidant activity and 
immune function [10]. An association between selenium 
deficiency, immune dysfunction, progression to AIDS, 
and death has been shown in cohort studies conducted 
before antiretroviral therapy (ART) in both children 
and adults [11, 12]. Zinc is an antioxidant and immune 
modulator and may have antiviral effects as zinc deficient 
populations are at higher risk of acquiring viral infections 
[13]. In adults living with HIV, low levels of serum zinc 
have been associated with more advanced HIV disease 
and increased mortality independent of baseline CD4 
count [14]. Both zinc and selenium are bound to albumin 
for their transportation within plasma, and their levels 
may be low in the setting of hypoalbuminemia, although 
the total body content may still be normal.

While ART has improved the survival of CLHIV in 
low resource settings, children often have higher HIV 
viral loads before initiating ART and take longer to 
achieve viral suppression compared to adults, independ-
ent of ART regimen [15, 16]. In addition, undernutrition 
is a risk factor for mortality in CLHIV [17] and SAM is 
associated with worse prognosis and impaired immune 
recovery in CLHIV on ART [18]. What is not known is 
the micronutrient status in children with SAM who are 
living with HIV and whether the micronutrients in the 
currently recommended WHO nutritional rehabilita-
tion is adequate for these children. The objectives of this 
analysis were to (1) estimate and compare entry levels 
of zinc, selenium and albumin in children with HIV and 
mild malnutrition-normal nutrition to those with HIV 
and SAM, (2) compare their changes over 48 weeks and 
(3) assess whether micronutrient levels return to normal 
over the same period in those with SAM.

Methods
This is a secondary analysis in the IMPAACT P1092 
study, a Phase IV, multicenter, open label, non-rand-
omized study conducted at five sites in four countries 
(Malawi, Tanzania, Uganda, and Zimbabwe) between 

https://clinicaltrials.gov/show/NCT01818258
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October 2015 and September 2017. Details of the main 
study methods and results from the primary analyses of 
the pharmacokinetics and safety of zidovudine, lamivu-
dine and lopinavir/ritonavir in children with SAM have 
been previously published [19]. Briefly, nutritional status 
of CLHIV aged six to < 36 months at screening was clas-
sified using WHO criteria as SAM (Weight-for-height 
Z-score (WHZ) < -3 or mid-upper arm circumference 
(MUAC) < 115  mm) or non-SAM (WHZ > -2) [7]. The 
latter group comprised those with mild malnutrition 
(WHZ > -2 to ≤ -1) or normal nutrition (WHZ > -1). Chil-
dren with edematous malnutrition or moderate malnu-
trition (WHZ -3 to -2) were not included in the study. 
Children who had SAM were managed according to the 
WHO guidelines for management of SAM [7] before and 
during the study screening period and enrolled into the 
study 10–18  days after starting nutritional rehabilita-
tion. They were given a milk formula (F-75) during the 
stabilization phase before study entry and subsequently 
transitioned to another milk formula (F-100). In general, 
the SAM cohort was recruited from nutritional rehabili-
tation clinics while the non-SAM cohort was recruited 
from HIV treatment centers. Participants initiated 
study-provided ART consisting of liquid formulation of 
zidovudine, lamivudine, and ritonavir-boosted lopinavir 
within one day of study entry, with switches from ZDV 
to abacavir (ABC) allowed in cases of ZDV intolerance or 
hematologic toxicity.

Study visits and evaluations
Children were followed through 48  weeks for clinical 
status and nutritional outcomes at weeks 1, 2, 4, 8, 12, 
16, 20, 24, 36, and 48. Blood specimens were collected 
at study entry and at week 48 for micronutrient analy-
sis (including zinc and selenium) among those partici-
pants still on initial study treatment (liquid formulation 
of ZDV/3TC/LPV/r). Zinc and selenium deficiency were 
defined as plasma levels below the pediatric reference 
ranges included in Supplemental Table 1 [20, 21].

Albumin and total protein serum levels were measured 
at study entry, weeks 8, 16, and 48 and evaluated accord-
ing to local clinical laboratory reference ranges. Blood for 
albumin and total protein was collected in serum separa-
tor or non-additive tubes and tested using bromocresol 
and biuret methods, respectively.

Micronutrient levels
Whole blood specimens for micronutrients were col-
lected in royal blue top EDTA trace element tubes. (BD 
catalog #368,381; Bectin Dickinson, Franklin Lakes NJ). 
Specimens were spun at 800xg for 10 min, then plasma 
was removed and re-spun at 800xg for 10 min. Aliquots 
were frozen and stored at -70 °C before being shipped to 

Boston Children’s Hospital Laboratory (Boston, MA) for 
batched testing. Zinc and selenium were measured by a 
graphite-furnace atomic absorption spectrophotometric 
method with deuterium background correction and a 
reduced palladium modifier, using a Perkin-Elmer system 
[22]. The assay had day-to-day variability < 5.0% for zinc 
over a wide range of concentrations and for selenium at 
concentrations of 1.20–2.30 µmol/L.

Statistical analysis
The SAM and non-SAM cohorts were compared for lev-
els of zinc and selenium at study entry, changes in zinc 
and selenium levels from entry over 48 weeks, zinc and 
selenium deficiency at study entry and after 48  weeks, 
prevalence of hypoalbuminemia (albumin < 35  g/L), and 
levels of albumin and total protein over 48 weeks.

Baseline values were defined as the closest measure-
ment on or before the day of study entry. Continuous 
outcome measures were compared between cohorts 
with a two-sided t-test assuming unequal variance. Dif-
ferences in the observed prevalence of micronutrient 
deficiencies and hypoalbuminemia were compared using 
Fisher’s exact test with mid-p-value. Linear mixed effects 
models compared longitudinal albumin and total pro-
tein levels between cohorts. Models included a partici-
pant random effect and cohort, follow-up time, and the 
interaction between cohort and follow-up time as fixed 
effects. Results were considered statistically significant 
per analysis plan if the p-value was less than 0.05, and 
no adjustments were made for multiple comparisons. All 
statistical analyses were performed using SAS 9.4 Insti-
tute Inc., Cary, NC,USA.

Results
Fifty-two participants, 25 with SAM and 27 with mild 
malnutrition or normal nutrition (non-SAM cohort) 
were enrolled over a 12-month period. A total of 22/25 
from the SAM cohort and 24/27 from the non-SAM 
cohort completed 48  weeks of follow up. Prior to week 
48, three (12.0%) SAM participants died, and three 
(11.1%) non-SAM participants withdrew from the study. 
Except for one participant who had a low albumin, the 
three participants who died had normal levels of zinc, 
selenium, and total protein. All participants living with 
HIV initiated liquid ZDV/3TC/LPV/r formulations 
within one day of study entry. Four (16.0%) SAM partici-
pants discontinued study treatment early; one developed 
tuberculosis and another edematous malnutrition while 
two were non-adherent to study treatment. One (3.7%) 
non-SAM participant who was non-adherent to ART 
completed follow-up but discontinued study treatment 
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prior to week 48 and per protocol, week 48 micronutri-
ents were not measured (Fig. 1).

Participants who switched their initial liquid ARV 
treatment included one SAM participant who switched 
to ABC/3TC/LPV/r and four participants were switched 
to a solid formulation of ZDV/3TC/LPV/r for the remain-
der of follow-up through 48. These five participants had 
no week 48 selenium or zinc measured but total protein 
and albumin were measured at week 48.

Table  1 summarizes demographic and study entry 
characteristics of the 52 enrolled participants. There were 
more males in the SAM group (64%) and median ages 
were similar. Fifty-six percent of the non-SAM cohort 
had mild malnutrition. The median (Q1, Q3) WHZ at 

screening was -3.4 (-4.0, -3.0) in the SAM cohort and -1.0 
(-1.8, -0.1) in the non-SAM cohort. The SAM cohort had 
a worse WHO clinical disease stage (60% stage III/IV) 
compared to the non-SAM cohort (11% stage III). Simi-
larly, CD4% at screening was lower in the SAM compared 
to the non-SAM cohort. Median (Q1, Q3) levels of zinc 
and selenium were 50.4 (41.7, 59.8) µg/dL and 92.7 (77.6, 
103.9) µg/L in the SAM cohort and 53.1 (47.1, 62.5) µg/
dL and 83.2 (64.7, 105.6) µg/L in the non-SAM cohort, 
respectively. At entry, all children in the SAM cohort 
received some form of therapeutic food compared to 
6/27 (22.2%) in the non-SAM cohort, which included 
zinc. Eight (32%) SAM and 4 (14.8%) non-SAM partici-
pants were given zinc through supplements.

Table 1 Demographic and study entry characteristics

Characteristic Severe acute malnutrition Mild 
malnutrition/
normal nutrition

N = 25 N = 27

Sex
 Male 16 (64%) 13 (48%)

Age (months)
 median, (Q1, Q3) 19 (13,25) 18 (12,25)

 6‑ < 18mo 11 (44%) 13 (48%)

  ≥ 18mo 14 (56%) 14 (52%)

Cohort subgroup
 SAM 25 (100%) 0 (0%)

 Mild malnutrition 0 (0%) 15 (56%)

 Normal nutrition 0 (0%) 12 (44%)

WHO Clinical Stage
 Clinical Stage I 8 (32%) 20 (74%)

 Clinical Stage II 2 (8%) 4 (15%)

 Clinical Stage III 5 (20%) 3 (11%)

 Clinical Stage IV 10 (40%) 0 (0%)

Log10 HIV-1 RNA (copies/mL)
 median (Q1, Q3) 4.8 (4.2,5.6) 5.6 (4.8,6.1)

CD4% (screening)
 median (Q1, Q3) 15.0 (9.0,22.6) 23 (17,31)

Zinc (ug/dL)
 median (Q1, Q3) 50.4 (41.7,59.8) 53.1 (47.1,62.5)

 % zinc deficient 2 (8%) 0 (0%)

Selenium (ug/L)
 median (Q1, Q3) 92.7 (77.6,103.9) 83.2 (64.7,105.6)

 % selenium deficient 0 (0%) 0 (0%)

Albumin (g/L)
 median (Q1, Q3) 35 (31.0,40.0) 41.7 (36.0,47.0)

Total protein (g/L)
 median (Q1, Q3) 70.1 (67.1,83.7) 77.0 (73.2,84.0)

Therapeutic feed 25 (100.0%) 6 (22.2%)

Any supplements containing zinc 8 (32.0%) 4 (14.8%)
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After study entry, all children in the SAM cohort 
received therapeutic food for a median of 20 weeks while 
33.3% of the non-SAM cohort took therapeutic food for 
a median of 6.1 weeks. At week 48, 12/22 (54.5%) of the 
SAM cohort in follow-up and 4/24 (16.7%) of the non-
SAM cohort were taking some form of zinc either as a 
therapeutic food or supplements (Supplemental Table 2).

Micronutrients
Table  2 and Fig.  2 show the distribution of zinc, sele-
nium, total protein, and albumin from study entry to 
week 48. At week 48, 18 (72.0%) participants in the 
SAM cohort and 23 (85.2%) in the non-SAM cohort 
were on study treatment and had micronutrient data 
available.

Fig. 1 Flow diagram

Table 2 Micronutrient and protein levels at entry and week 48

SD Standard deviation, CI Confidence interval
* Two‑sided t‑test for the difference in means assuming unequal variance

Micronutrient Study visit Cohort Differences Between Cohorts

Severe acute 
malnutrition

Mild malnutrition/
normal nutrition

N Mean (SD) N Mean (SD) Mean Difference (95% CI) (95% CI) P-value*

Zinc (µg/dL) Entry 25 52.2 (15.3) 27 54.7 (12.0) ‑2.5 (‑10.2,5.2) 0.52

Week 48

Value 18 68.5 (17.2) 23 69.0 (15.6) ‑0.6 (‑11.1, 10.0) 0.91

Change from entry 18 15.3 (19.3) 23 15.6 (13.3) ‑0.3 (‑11.2, 10.5) 0.95

Selenium (µg/L) Entry 25 92.9 (25.0) 27 84.3 (29.2) 8.6 (‑6.5,23.7) 0.26

Week 48

Value 18 93.9 (37.4) 23 83.1 (34.4) 10.8 (‑12.3, 33.9) 0.35

Change from entry 18 ‑3.2 (22.1) 23 2.0 (25.2) ‑5.1 (‑20.1,9.8) 0.49

Total protein (g/L) Entry 25 75.2 (13.2) 27 77.3 (9.4) ‑2.0 (‑8.5, 4.4) 0.53

Week 48

Value 22 74.8 (6.2) 22 71.9 (4.8) 2.9 (‑0.5, 6.2) 0.096

Change from entry 22 ‑0.9 (13.4) 22 ‑5.4 (9.0) 4.6 (‑2.4, 11.6) 0.19

Albumin (g/L) Entry 25 34.7 (6.8) 27 40.9 (7.1) ‑6.2 (‑10.1, ‑2.4) 0.002

Week 48

Value 22 43.3 (3.9) 24 43.0 (4.6) 0.4 (‑2.2, 2.9) 0.77

Change from entry 22 8.8 (7.8) 24 2.5 (6.9) 6.3 (1.9, 10.7) 0.006
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No participants had selenium deficiency at entry or 
week 48. At entry, only two participants [(8%) (95% confi-
dence interval (CI) 1.4, 27.5) in the SAM cohort had zinc 
deficiency and none in the non-SAM cohort (Table  1). 
Participants with zinc deficiency were one male aged 
19  months and one female aged 14  months who took 

therapeutic feed for 14 days and nine days before entry, 
respectively. The male participant had a baseline WHZ 
-3.02, 11.4  cm MUAC, plasma viral load 14,915 copies/
mL and screening CD4 percent of 19.6. The female par-
ticipant had baseline WHZ -4.15, 11  cm MUAC, viral 
load 182 copies/mL, and screening CD4 23.7%. Both 

Fig. 2 Mean and mean change in zinc, selenium, albumin, and total protein
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were at WHO Clinical Stage IV at study entry and con-
tinued study treatment for 48  weeks. None of the 18 
SAM or 23 non-SAM participants with data available 
had zinc deficiency after 48  weeks of study treatment. 
At entry, mean zinc levels were similar between the two 
cohorts (Table 2). At week 48, mean (SD) changes in zinc 
levels over 48 weeks were also similar: 15.3 (19.3) µg/dL 
for the SAM cohort and 15.6 (13.3) µg/dL for the non-
SAM cohort with a mean difference and 95% CI of -0.3 
(-11.2, 10.5) µg/dL. Selenium levels varied but mean lev-
els were similar between cohorts at entry and did not 
differ after 48 weeks of treatment. The SAM cohort had 
a mean change in selenium of -3.2  µg/L while the non-
SAM cohort had a positive mean change of 2.0 µg/L with 
a mean difference (95% CI)-5.1 (-20.1, 9.8) µg/L. Overall, 
there was no evidence of a difference in mean zinc and 
selenium levels between cohorts at entry or at week 48 
nor in the change from entry to week 48 levels. There was 
a strong positive correlation between entry and week 48 
levels for selenium in both cohorts and for zinc in the 
non-SAM cohort (Fig. 3).

Total protein and albumin
Mean total protein levels were similar in the SAM and 
non-SAM cohorts at entry but the SAM cohort had more 
variability, with mean, (SD) 75.2 (13.2) g/L) and 77.3 (9.4) 
g/L in non-SAM (Table  2, Fig.  2). The mean change in 
total protein from entry to week 48 was similar between 
the cohorts with a mean difference (95% CI) of 4.6 (-2.4, 
11.6) g/L; however the SAM cohort had slightly higher 
levels at Week 48. The SAM cohort had significantly 
lower albumin levels at entry compared to the non-SAM 
cohort, mean difference, (95% CI) -6.2 (-10.1, -2.4) g/L 
but levels were similar after 48 weeks of follow up with a 
mean difference (95% CI) of 0.4 (-2.2, 2.9) g/L. The mean 
increase in albumin was significantly higher in the SAM 

cohort, compared to the non-SAM cohort after 48 weeks 
(mean difference (95% CI) 6.3 (1.9, 10.7) g/L). Hypoalbu-
minemia decreased over time in the SAM cohort, from 
11 (44%) participants with hypoalbuminemia at entry, 
two (8.7%) at both week 8 and 16, and none at week 48. 
(Supplemental Table  3). The non-SAM cohort had five 
(18.5%) participants at entry with hypoalbuminemia, one 
(4.3%) at weeks 8 and 16, and two (8.3%) at week 48.

In supplemental repeated measures analyses comparing 
albumin and total protein levels over all visits (Supple-
mental Table 4) the SAM cohort had significantly lower 
albumin levels with an overall mean difference estimate 
(95% CI) of -2.66 (-4.86, -0.46) g/L (main effects model, 
p-value = 0.02), while no differences were seen in total 
protein (mean difference estimate (95% CI): 0.37 (-3.25, 
3.98) g/L, p-value = 0.84). The difference in albumin lev-
els between cohorts decreased over time (estimate of 
mean decrease (95% CI) in cohort difference: 0.10 (0.04, 
0.17) g/L per week, interaction term p-value = 0.003).

Discussion
In this exploratory analysis of micronutrient and protein 
levels in children aged six to less than 36  months liv-
ing with HIV, comparing those who had normal or mild 
malnutrition to severe acute malnutrition, children with 
SAM had similar micronutrient levels after nutritional 
rehabilitation and similar albumin levels by 48  weeks 
compared to those without SAM.

Zinc and selenium deficiency were not common in this 
cohort of children, unlike an older cohort of ART naive 
Thai children who all had zinc deficiency at baseline [23]. 
A similar observation was made in a cohort of 70 ART-
naïve Nigerian children, mean age 58  months who had 
a prevalence of zinc and selenium deficiency of 77.1% 
and 71.4% respectively compared to 44.3% and 18.6% in 
HIV negative controls [24]. The duration of stabilization 

Fig. 3 Zinc and Selenium Levels at Entry and Week 48
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for severely malnourished children (10–18 days) prior to 
study entry might have improved micronutrient levels of 
children with SAM thus reducing differences between 
cohorts at study entry.

The SAM cohort had significantly lower albumin levels 
at entry, but levels appeared to catch up to the non-SAM 
cohort by week 48 of follow up. Hypoalbuminemia is a 
consistent feature of protein-energy malnutrition in chil-
dren and has been associated with an increased risk of 
mortality in some studies [25–27].

This study has limitations. The sample size was 
small, and the analysis was conducted in children after 
10–18 days of nutritional rehabilitation, thus missing the 
opportunity to sample micronutrient and protein levels 
at initial hospitalization. Micronutrient and protein levels 
could have improved during the initial period of nutri-
tional rehabilitation prior to study entry. Children with 
moderate malnutrition were not enrolled in the study by 
design and results cannot be generalized to this popu-
lation. Use of therapeutic feeds, other nutritional sup-
plements, or breastmilk containing zinc and selenium 
in children in the non-SAM cohort may have reduced 
otherwise expected differences in micronutrient levels 
between the SAM and non-SAM cohorts. In addition, 
the study was not able to assess all the dietary intake of 
the participants.

A strength of this study is that it was conducted in mul-
tiple sub-Saharan African countries where acute malnu-
trition and HIV are highly prevalent, and participants 
received the same ART regimen. Use of liquid formula-
tions in this study however limits generalizability to solid 
drug formulations which are in use in most low resource 
settings in the 6 to the 36-month age range studied.

Conclusion
In conclusion, this exploratory analysis of CLHIV and 
malnutrition receiving three-drug combination antiret-
roviral therapy showed normal levels of selenium and 
zinc after a period of nutritional rehabilitation and 
similar albumin levels by 48 weeks of follow up in those 
with severe malnutrition compared to those with mild-
moderate malnutrition. Contrary to the hypothesis, 
selenium deficiency was not observed and only 8% of 
SAM participants had zinc deficiency at baseline. Albu-
min was on average lower in the SAM cohort com-
pared to the non-SAM cohort with normalization to 
non-SAM levels by 48 weeks. Total protein was similar 
between cohorts at study entry and through week 48. 
There was a strong positive correlation between entry 
and week 48 selenium levels within each cohort and 
for zinc in the non-SAM cohort. These data support 
the current WHO recommended approach to man-
agement of child malnutrition in CLHIV and severe or 

mild-moderate malnutrition who receive highly active 
combination antiretroviral treatment. Attention to 
nutritional status is a key strategy for both groups to 
prevent micronutrient deficiency, promote growth, and 
improve health outcomes.
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