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Preliminary evidence that lectins in infant 
soy formula apparently bind bovine milk 
exosomes and prevent their absorption 
in healthy adults
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Abstract 

Background:  Milk exosomes and their microRNA (miR) cargos are bioavailable. The content of exosomes and miRs is 
negligible in infant formulas compared to human milk, and dietary depletion of exosomes led to changes in bacte-
rial communities and impaired gut health in juvenile mice. Adverse effects of formula feeding may be compounded 
by using soy formulas due to exosome binding by abundant lectins in that matrix. The purpose of this study was to 
assess the bioavailability of milk exosomes and their miR cargos added to soy formula in adults, as well as the poten-
tial role of soy lectins in exosome bioavailability.

Methods:  Eleven healthy adults (6 men, 5 women) enrolled in this randomized crossover study. Participants con-
sumed 1.0 l of soy formula without (SF) or with (SFE) bovine milk exosomes added. Concentration-time curves of six 
plasma miRs were analyzed using reverse transcription quantitative PCR. Lectin affinity chromatography was used 
to assess the binding of exosomes by soy lectins. Data were analyzed by using paired t test. P < 0.05 was considered 
statistically significant.

Results:  Consumption of SF and SFE did not elicit postprandial increases in plasma miRs. Approximately 39% of 
bovine milk exosome particles were retained by lectin columns.

Conclusions:  We conclude that fortification of soy formulas with milk exosomes, in the absence of removing lectins, 
is not a viable strategy for delivering bioavailable exosomes and their miR cargos. Lectins in soy formulas bind glyco-
protein on the surfaces of milk exosomes, thereby preventing exosome absorption.

Trial registration:  ISRCTN registry ID: 16329​971. Retrospectively registered on February 7th, 2019.
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Introduction
Exosomes play essential role in cell-to-cell communica-
tion, which is facilitated by the binding of exosomes to 
receptors on the surface of recipient cells or internali-
zation of exosomes and their cargos by recipient cells 

[1]. Among the regulatory cargos of exosomes, microR-
NAs (miRs) are of particular interest because more than 
60% of human genes have conserved miR-binding sites, 
humans synthesize approximately 2000 miRs, and loss 
of miR maturation is embryonic lethal [2–5]. MiRs alter 
gene expression by binding to complementary sequences 
in the 3′-untranslated regions in mRNA, leading to 
mRNA degradation or blockage of translation [6, 7].
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Exosomes are present in virtually all fluids, including 
human and bovine milk [8–11]. Encapsulation of miRs 
in exosomes confers protection against degradation by 
low pH and enzymes in the gastrointestinal tract [9] and 
a pathway for internalization by receptor cells [12]. We 
were the first to report that exosomes and their miR car-
gos may not solely originate in endogenous synthesis but 
may also be absorbed from milk [13–15]. Our discoveries 
were confirmed by independent laboratories while a few 
laboratories raised the concern that the amount of miRs 
absorbed from milk may be insufficient to elicit biological 
effects (reviewed in [16]).

Dietary depletion of milk exosomes and their RNA 
cargos elicited phenotypes such as increase in purine 
metabolites in human and murine body fluids and tissues 
[17]. Dietary depletion of bovine milk exosomes (BMEs) 
caused a variety of phenotypes in mice including a mod-
erate loss of grip strength, an increase in the severity of 
symptoms of inflammatory bowel disease, a decrease in 
postnatal survival and changes in bacterial communi-
ties in the ceca [17–21], whereas BMEs enhanced goblet 
cell activity and prevented the development of necrotiz-
ing enterocolitis in mice [22]. These observations raise 
concerns regarding infant nutrition by using formu-
las, because previous reports agree that the content of 
exosomes and miR cargos is modest to not detectable 
in milk formulas [9, 11, 23]. The nutritional importance 
of these observations has been highlighted in a recent 
review [24]. Effects may be compounded in infants fed 
soy formulas, which lack milk altogether. The global soy 
infant formula market is predicted to grow $278 million 
during 2019 to 2023 [25]. One might want to explore the 
possibility to fortify soy formulas with milk exosomes 
to make them more similar to human milk. There is 
precedent for optimizing nutrient content of infant for-
mulas through fortification by formula manufactur-
ers [26, 27]. The mere fortification of soy formulas with 
milk exosomes could prove problematic because lectins, 
including those in soy, bind to carbohydrates and aggre-
gate cells and exosomes [28, 29]. In soybeans, 0.5% of 
proteins are lectins [30]. Proteins on the outer exosome 
surface are extensively glycosylated [31], making the tar-
gets for precipitation by lectins. Lectins in legumes such 
as soy are resistant to heat denaturation, and heating of 
legumes at 70 °C for several hours has little or no effect 
on lectin activity [32]. Infant formula is pasteurized by 
holding a temperature of up to 94 °C for up to 30 s [33].

This study assessed the bioavailability of exosomal 
miRs in soy infant formulas fortified with BMEs. Because 
of the need to perform serial blood collections, this study 
was conducted in healthy adults as a model for infants. 
We focused on immune-related miRs (miR-15b, miR-
21-5p, miR-34a-5p, miR-106b, miR-155, and miR-223), 

because they are abundant in human milk and their 
nucleotide sequences are identical in humans and cows 
[3, 34].

Methods
Participants
Eleven healthy adults (6 men, 5 women) participated in 
this study. Subjects were 28.8 ± 3.51 years old and had a 
BMI of 23.6 ± 2.24 kg/m2 (means ± SD). Exclusion cri-
teria included pregnancy, smoking, milk allergies, and 
self-reported health problems. The Institutional Review 
Board at the University of Nebraska-Lincoln approved 
this protocol, and all participants provided a signed 
informed consent form before participation (protocol 
number IRB# 20131013755FB). This study was retrospec-
tively registered as a clinical trial with the ISCRTN regis-
try (ISRCTN16329971) on 07/02/2019.

Experimental design of the formula feeding study
We used a randomized cross-over design. Participants 
were randomly assigned to treatment groups (Enfamil; 
milk-free and lactose-free powder with iron) without (SF) 
or with (SFE) BME fortification and a washout period of 
at least 1 week between treatments by using computer-
ized numbers. Bovine milk contains approximately 1014 
exosomes per milliliter [35]. Exosomes were isolated 
from 1.0 l bovine milk (1% fat) obtained from a local gro-
cery store. Exosomes were isolated by ultracentrifuga-
tion as described previously [14, 36] and re-suspended 
in a final volume of 1 ml in sterile phosphate-buffered 
saline and stored at − 80 °C until use. In previous stud-
ies we reported the results from BME authentication by 
transmission electron microscopy, Nanosight size analy-
sis and immunoblotting of exosome markers and markers 
of extracellular vesicles other than exosomes [14, 15, 35]. 
Soy infant formula (Enfamil; milk-free and lactose-free 
powder with iron) was purchased from a local grocery 
store. A 1.0-l dose of soy infant formula was prepared 
following the manufacturer’s instructions. For fortifica-
tion of soy formula drinks, a homogenous suspension 
of 1 ml of exosomes obtained from 1.0 l of bovine milk 
was added to the soy infant formula drink, and thor-
oughly mixed before human consumption. We assessed 
the miR content in BMEs by RNA-sequencing analysis 
and reported the findings in a previous publication [35] 
A 28-yr-old male participant (77 kg body weight, 1.72 m 
height) served as reference and consumed 1.0 l formula. 
The volume consumed by the other subjects was adjusted 
by total body water [37]. The volume consumed equaled 
0.84 ± 0.15 l (mean ± SD) for the 11 participants. This 
dose produced a robust increase in plasma miR concen-
trations in a previous study in a similar cohort of adults 
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[13]. Participants consumed SF or SFE in a randomized 
order.

Sample collection and miR analysis
Blood samples were collected before (baseline; time = 0 h) 
and 3, 6, and 9 h after formula consumption. Blood 
samples were collected in EDTA tubes to avoid loss of 
exosomes by binding to heparin [38]. Plasma was sepa-
rated from cellular materials by using Histopaque gradi-
ent centrifugation and stored at − 80 °C until miR analysis 
[39]. Samples compromised by hemolysis were discarded, 
because the release of miRs from red blood cells is a con-
founder in miR analysis [40]. The nucleotide sequences 
of the vast majority of mature bovine miRs are identi-
cal to their human orthologs, including miR-1, miR-15b, 
miR-21-5p, miR-34a-5p, miR-106b, miR-155 and miR-
223 [3]. MiR-1 was tested because it is not detectable in 
bovine milk exosomes (negative control). The other six 
miRs were tested because they were the focus of a paral-
lel study of the amelioration inflammatory bowel disease 
by miRs in milk exosomes [19]. Note that some of these 
miRs are less abundant than miR-30d, miR-148a and the 
let-7 family of miRs in human and bovine milk exosomes 
[9, 11, 24]. A synthetic miR, miSPIKE (IDT DNA, Inc.) 
was added to plasma samples after denaturation with 
lysis buffer and served as external standard. Plasma miRs 
were measured by using reverse transcription quantita-
tive PCR (RT-qPCR) as previously described, modified by 
purification of columns in NucleoSpin miRNA plasma kit 
(Macherey-Nagel) described below [13]. The kit provides 
a proprietary universal reverse primer, whereas forward 
primers are miR specific (Table 1). Under the experimen-
tal conditions, miRs that produced Ct values ≤30.0 were 
considered detectable. Concerns were raised regarding 
the contamination of spin columns for RNA isolation 
with microbial RNAs, which might cause artifacts in miR 
analysis [41]. We formally tested for column contamina-
tion by passing molecular biology grade water through 

hypochlorite-treated and non-treated columns and com-
pared the Ct values of the six miRs in the two treatments 
by RT-qPCR. Although, we could not reproduce the find-
ing that spin columns are contaminated (see Results), we 
decided to err on the side of caution and treated columns 
with 0.5% sodium hypochlorite [41].

Lectin affinity chromatography
Plastic syringes (3-ml volume; BD Biosciences cat. no. 
309657) were fitted with Grade 6 qualitative filter paper 
(Whatman cat. no. 1006–125) in the bottom and packed 
with 2 ml agarose-bound soybean agglutinin (Vector 
Laboratories, cat. no. AL-1013) and equilibrated with 
binding buffer (10 mM HEPES, 150 mM NaCl, pH 7.5) 
at room temperature. A 1-ml suspension of BMEs with 
particle and protein concentrations (1013 BMEs; 19.8 mg/
ml protein) was loaded and 1 ml flow through (referred to 
as FB in Results) was collected. One 1 ml binding buffer 
was added, the stopcock was closed, and columns were 
incubated at room temperature for 60 min. Columns 
were washed with binding buffer and 1-ml fractions 
were collected until the absorbance at 280 nm in the elu-
ate returned to baseline values (referred to as F1- F16 in 
Results). Next, elution buffer (10 mM HEPES, 150 mM 
NaCl, 200 mM N-acetylgalactosamine, pH 7.5) was 
applied and 100-μl fractions were collected (referred to as 
E1- E30 in Results). The absorbance at 280 nm in fraction 
E30 was the same as in elution buffer (blank). The num-
ber of BMEs in F1 – E30 was assessed by using a Malvern 
NanoSight NS300 nanoparticle tracking instrument.

Statistical analyses
Normality of data distribution was determined by using 
the Kolmogorov-Smirnov test. Data were analyzed by 
using paired t test. Data were calculated by using Graph-
Pad Prism 6 (GraphPad Software). Data are reported as 
means ± SD. Differences were considered statistically 
significant if P < 0.05.

Results
Bioavailability of miRs in SF and SFE
Four of the six miRs tested were detectable in human 
plasma, miR-15b, miR-21-5p, miR-106b and miR-223. 
MiR-34a-5p and miR-155 were not detectable before 
and after consumption of SF and SFE (Ct values ≈34). 
Both SF and SFE failed to elicit a significant postpran-
dial increase in plasma miR concentrations for any of 
the miRs tested (Table 2). MiR-1 was used as a negative 
control because it is not detectable in bovine milk [13]. 
The Ct values for miSpike were not significantly different 
among time points but were well within detection limits 
(Ct values 22 ± 1.1 to 23 ± 1.9), whereas Ct values were 
31 ± 1.3 to 33 ± 1.9 for miR-1. We could not reproduce a 

Table 1  PCR primers used for the quantification of miRs in 
human plasma

Amplicon Forward Primer

miSPIKE CTC​AGG​ATG​GCG​GAG​CGG​TCT​

miR-1 TGG​AAT​GTA​AAG​AAG​TAT​GTAT​

miR-15b TAG​CAC​ATC​ATG​GTT​TAC​A

miR-34a-5p TGG​CAG​TGT​CTT​AGC​TGG​TTGT​

miR-106b TAA​AGT​GCT​GAC​AGT​GCA​GAT​

miR-155 TTA​ATG​CTA​ATC​GTG​ATA​GGGGT​

miR-21-5p GCT​AGC​TTA​TCA​GAC​TGA​TGT​TGA​

miR-223 CTG​TCA​GTT​TGT​CAA​ATA​CCCCA​
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previous report that suggested contamination of spin col-
umns with small bacterial RNAs. Briefly, when we passed 
molecular biology grade water through hypochlorite-
treated and non-treated columns and compared the Ct 
values of the six miRs in the two treatments by RT-qPCR 
(N = 5 per treatment), Ct values were greater than 35 in 
all samples tested.

The failure of BMEs fortification to elicit a postpran-
dial increase in plasma miR concentrations is consistent 
with agglutination of BMEs by the soy lectins in formu-
las. We formally tested for this possibility by using soy 
lectin affinity chromatography. Approximately 39% from 
a suspension of BMEs in 1.4 × 1013 particles/buffer were 

retained by agarose-bound soybean agglutinin (Fig.  1), 
suggesting that the addition of BMEs to soy formulas is 
not a viable fortification strategy.

Discussion
This study represents an important advance in the field 
of milk exosomes and their miR cargos, particularly as 
it relates to infant nutrition. SF does not contain milk 
exosomes and the mere addition of BMEs in SFE does 
not lead to a detectable increase in the plasma concen-
trations of the six miRs tested here. Our studies provide 
evidence that absorption of BMEs added to SF is pre-
vented by BMEs agglutination by soy lectins. While the 

Table 2  Ct values of plasma miRs before and after consumption of SF and SFE in healthy adults1

1 Values are means ± SD, n = 11, P > 0.05 vs hour 0

Ct cycle threshold, miR microRNA, SF soy formula, SFE soy formula fortified with bovine milk exosomes

Ct values

miR-15b miR-21-5p miR-106b miR-223
Hour SF SFE SF SFE SF SFE SF SFE

0 30 ± 0.9 30 ± 0.8 29 ± 1.7 30 ± 1.3 31 ± 1.4 32 ± 1.1 30 ± 2.2 30 ± 1.9

3 30 ± 0.8 30 ± 1.0 29 ± 1.6 30 ± 1.6 30 ± 1.2 31 ± 1.3 29 ± 1.5 29 ± 1.8

6 30 ± 1.1 30 ± 1.8 29 ± 1.5 29 ± 2.1 31 ± 1.5 31 ± 1.9 29 ± 1.7 30 ± 2.3

9 30 ± 1.2 30 ± 2.0 29 ± 1.6 29 ± 1.9 31 ± 1.0 32 ± 1.3 30 ± 2.2 30 ± 2.6

Fig. 1  Retention of bovine milk exosomes by lectin affinity chromatography. Fractions F1 – F16 were collected after loading and elution with 1 ml 
binding buffer; fractions E1 – E30 were collected after elution with 1 ml elution buffer
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importance of dietary miRs for the optimal development 
of infants remains to be demonstrated, evidence sug-
gests that milk exosomes may have positive effects on the 
health of infants. It remains to be determined whether 
removal of lectins from SFs can be achieved on a large 
scale at reasonable cost, and whether such treatment is 
desirable from a dietary point of view. Note that, in addi-
tion to the studies of SFs reported here, milk formulas 
also contain amounts of exosomes and miRs far below 
those in human milk [9, 11, 23].

Most Americans do not meet the recommendation by 
the American Academy of Pediatrics to exclusively breast 
feed infants in the first 6  months of life [42]. Only 26% 
of the children born in 2017 were exclusively breastfed 
through 6 months in the U.S. [43]. When framed in the 
context of the number of births in the U.S., approximately 
2.78 million out of the 3.75 million infants born in the 
U.S. in 2019 were exclusively or partially fed with formu-
las during the first 6 months of life, i.e., the magnitude of 
translational activities must not be underestimated [44]. 
It has been reported that infants fed with soy formulas 
displayed transient delays in cognitive performance com-
pared to breastfed infants, and formula-fed infants have a 
greater risk for becoming obese and develop diabetes and 
cardiovascular disease later in life [45–51].

Our findings point toward additional studies needed 
in the field of milk exosomes and infant nutrition. One 
could consider identifying the glycan features on the exo-
some surface responsible for the interaction between 
bovine exosomes and human cells. For example, future 
studies need to assess whether depletion of lectins in soy 
formulas results in the absorption of BMEs and their miR 
cargos added to formulas and explore the removal of lec-
tins under controlled conditions. Ongoing studies in our 
laboratory address this question, as well as non-canonical 
pathways of exosome signaling such as changes in the 
gut microbiome, the binding of RNAs to Toll-like recep-
tors, and biological activities of RNAs other than miRs. 
Finally, we intend to assess the developmental advantage, 
if any, conferred by milk exosomes to nursing offspring in 
mammals.

Conclusions
We conclude that fortification of SF with BMEs is not a 
viable strategy when the goal is to provide bioavailable 
exosomes and miR cargos to infants. Any such strategies 
would need to be accompanied by prior removal of lec-
tins from soy formulas.
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Reverse-transcription quantitative PCR; SF: Soy formula; SFE: Soy formula forti-
fied with bovine milk exosomes.
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