McLean E, Cogswell M, Egli I, Wojdyla D. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009;12:444–54.
WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. 2011 [Internet]. Geneva; 2015. Available from: http://www.who.int/vmnis/indicators/haemoglobin.pdf
Khambalia AZ, Aimone AM, Zlotkin SH. Burden of anemia among indigenous populations. Nutr Rev. 2011;69:693–719.
DeMaeyer EM, Adiels-Tegman M. The prevalence of anaemia in the world. La prevalence de l'anémie dans le monde. World Health Stat Q. Rapport trimestriel de statistiques sanitaires mondiales. 1985;38:302–16.
CAS
PubMed
Google Scholar
Jamieson JA, Kuhnlein HV. The paradox of anemia with high meat intake: a review of the multifactorial etiology of anemia in the Inuit of North America. Nutr Rev. 2008;66:256–71.
Article
Google Scholar
Jamieson JA, Weiler HA, Kuhnlein HV, Egeland GM. Prevalence of unexplained anaemia in Inuit men and Inuit post-menopausal women in northern Labrador: international polar year Inuit health survey. Can J Public Health. 2016;107:e81–7.
Plante CL, Blanchet C, Rochette L, O Brien HT. Prevalence of anemia among Inuit women in Nunavik, Canada. IJCH. 2011;70:154–65.
Google Scholar
Petry N, Olofin I, Hurrell R, Boy E, Wirth J, Moursi M, et al. The Proportion of Anemia Associated with Iron Deficiency in Low, Medium, and High Human Development Index Countries: A Systematic Analysis of National Surveys. Nutrients.2016;8:693.
Jamieson JA, Kuhnlein HV, Weiler HA, Egeland GM. Higher n3-fatty acid status is associated with lower risk of iron depletion among food insecure Canadian Inuit women. BMC Public Health. 2013;13:289.
Kuhnlein HV, Receveur O. Local cultural animal food contributes high levels of nutrients for Arctic Canadian indigenous adults and children. J Nutr. 2007;137:1110–4.
Article
CAS
Google Scholar
Kenny TA, Fillion M, Simpkin S, Wesche SD, Chan HM. Caribou (Rangifer tarandus) and Inuit nutrition security in Canada. EcoHealth. 2018;15:590–607.
Article
Google Scholar
Kenny TA, Chan HM. Estimating wildlife harvest based on reported consumption by Inuit in the Canadian Arctic. Arctic. 2017;70(1):12.
Article
Google Scholar
Kenny TA, Hu XF, Kuhnlein HV, Wesche SD, Chan HM. Dietary sources of energy and nutrients in the contemporary diet of Inuit adults: results from the 2007–08 Inuit health survey. Public Health Nutr. 2018;21:1319–31.
Article
Google Scholar
Russell DE, Gunn A. Migratory tundra Rangifer. In: Jeffries MO, Richter-Menge JA, Overland JE, editors. Arctic report card; 2013. p. 1–136.
Google Scholar
Russell DE, Gunn A, White RG. CircumArctic collaboration to monitor Caribou and wild reindeer. Arctic. 2015;68:6–10.
Gunn A, Russell DE, Eamer J. Northern caribou population trends in Canada. Ottawa, ON: Canadian biodiversity: ecosystem status and trends 2010. Technical thematic report no. 10. In: Canadian councils of resource ministers; 2011.
Google Scholar
Vors LS, Boyce MS. Global declines of caribou and reindeer. Glob Chang Biol. 2009;15:2626–33.
Article
Google Scholar
Wesche SD, Chan HM. Adapting to the impacts of climate change on food security among Inuit in the Western Canadian Arctic. EcoHealth. 2010;7:361–73.
Article
Google Scholar
Rosol R, Powell-Hellyer S, Chan HM. Impacts of decline harvest of country food on nutrient intake among Inuit in Arctic Canada: impact of climate change and possible adaptation plan. IJCH. 2016;75:417–8.
Google Scholar
Nancarrow TL, Chan HM. Observations of environmental changes and potential dietary impacts in two communities in Nunavut, Canada. Rural Remote Health. 2010;10:1370.
Kenny TA, Fillion M, MacLean J, Wesche SD, Chan HM. Calories are cheap, nutrients are expensive – the challenge of healthy living in Arctic communities. Food Policy. 2018;80:39–54.
Article
Google Scholar
Saudny H, Leggee D, Egeland GM. Design and methods of the adult Inuit health survey 2007–2008. IJCH. 2012;71:19752.
Google Scholar
Health Canada. Canadian Nutrient File (CNF), 2015 [Internet]. Ottawa, Ontario: Food Directorate, Nutrition Research Division; 2015. Available from: http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/cnf_downloads-telechargement_fcen-eng.php
Jamieson JA, Weiler HA, Kuhnlein HV, Egeland GM. Traditional food intake is correlated with Iron Stores in Canadian Inuit men. J Nutr. 2012;142:764–70.
Article
CAS
Google Scholar
Laird BD, Goncharov AB, Egeland GM, Man Chan H. Dietary advice on Inuit traditional food use needs to balance benefits and risks of mercury, selenium, and n3 fatty acids. J Nutr. 2013;143:923–30.
Article
CAS
Google Scholar
Hayek El J, Egeland GM, Weiler HA. Older age and lower adiposity predict better 25-hydroxy vitamin D concentration in Inuit adults: International Polar Year Inuit Health Survey, 2007–2008. Arch Osteoporos. 2011;6:167–177.
Laird BD, Goncharov AB, Goncharov AB, Chan HM. Body burden of metals and persistent organic pollutants among Inuit in the Canadian Arctic. Environ Int. 2013;59:33–40.
Article
CAS
Google Scholar
Health Canada, Food Branch OONP, Promotion. Household Food Security Survey Module (HFSSM) - Health and Nutrition Surveys - Health Canada. 2012. Available from: http://www.hc-sc.gc.ca/fn-an/surveill/nutrition/commun/insecurit/hfssm-mesam-eng.php
Google Scholar
Health Canada, Food Branch OONP, Promotion. Determining Food Security Status - Food and Nutrition Surveillance - Health Canada. 2012. Available from: http://www.hc-sc.gc.ca/fn-an/surveill/nutrition/commun/insecurit/status-situation-eng.php
Google Scholar
Hidalgo B, Goodman M. Multivariate or multivariable regression? Am J Public Health. 2013;103:39–40.
Article
Google Scholar
Golden C, Fernald L, Brashares JS, Rasolofoniaina BR, Kremen C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. PNAS. 2011;108:19653–6.
Article
CAS
Google Scholar
Nancarrow TL, Chan HM, Ing A, Kuhnlein HV. Climate change impacts on dietary nutrient status of Inuit in Nunavut, Canada. FASEB J. 2008;22:Supplement1096–7.
Parlee BL, Sandlos J, Natcher DC. Undermining subsistence: barren-ground caribou in a “tragedy of open access.”. Sci Adv. 2018;4:e1701611.
Parlee BL, Wray K. Gender and the social dimensions of changing caribou populations in the Western Arctic. Living on the Land: Indigenous Women’s Understanding of Place. 2016:169–90.
Prasad AS. Clinical Spectrum of human zinc deficiency. In: Biochemistry of zinc. Boston, MA: Springer US; 1993. p. 219–58.
Chapter
Google Scholar
Rosol R, Huet C, Wood M, Lennie C, Osborne G, Egeland GM. Prevalence of affirmative responses to questions of food insecurity: international polar year Inuit health survey, 2007-2008. IJCH. 2011;70:488–97.
Google Scholar
Egeland GM, Johnson-Down L, Cao ZR, Sheikh N, Weiler HA. Food insecurity and nutrition transition combine to affect nutrient intakes in Canadian arctic communities. J Nutr. 2011;141:1746–53.
Article
CAS
Google Scholar
Pacey A, Weiler HA, Egeland GM. Low prevalence of iron-deficiency anaemia among Inuit preschool children: Nunavut Inuit child health survey, 2007–2008. Public Health Nutr. Cambridge University Press. 2011;14:1415–23.
Article
Google Scholar
Lucas M, Proust F, Blanchet C, Ferland A, Déry S, Abdous B, et al. Is marine mammal fat or fish intake most strongly associated with omega-3 blood levels among the Nunavik Inuit? Prostaglandins Leukot Essent Fat Acids. 2010;83:143–50.
Article
CAS
Google Scholar
Petersen KM, Parkinson AJ, Nobmann ED, Bulkow L, Yip R, Mokdad A. Iron deficiency anemia among Alaska natives may be due to fecal loss rather than inadequate intake. J Nutri. 1996;126:2774–2783.
Duhaime G, Chabot M, Gaudreault M. Food consumption patterns and socioeconomic factors among the inuit of Nunavik. Ecol Food Nutr. 2002;41:91–118.
Article
Google Scholar
Berti PR, Soueida R. Dietary assessment of indigenous Canadian Arctic women with a focus on pregnancy and lactation. IJCH. 2008;67:2304–11.
Google Scholar
Aizer A, Currie J. The intergenerational transmission of inequality: maternal disadvantage and health at birth. Science. 2014;344:856–861.
Balarajan Y, Ramakrishnan U, Özaltin E, Shankar A, Subramanian S. Anaemia in low-income and middle-income countries. Lancet. 2012;78:2123–35.
Google Scholar
Pirkle CM, Lucas M, Dallaire R, Ayotte P, Jacobson JL, Jacobson SW, et al. Food insecurity and nutritional biomarkers in relation to stature in Inuit children from Nunavik. Can J Public Health. 2014;105:233–8.
Article
Google Scholar
Zlotkin SH, Schauer C, Christofides A, Sharieff W, Tondeur MC, Hyder SMZ. Micronutrient sprinkles to control childhood Anaemia. PLoS Med. 2005;2:e1.
Article
Google Scholar
Christofides A, Schauer C, Sharieff W. Acceptability of micronutrient sprinkles: a new food-based approach for delivering iron to first nations and Inuit children in northern Canada. Chronic dis can. 2005:26:114–20.
Christofides A, Schauer C, Zlotkin SH. Iron deficiency and anemia prevalence and associated etiologic risk factors in first nations and Inuit communities in northern Ontario and Nunavut. Canadian Journal of Public Health. 2005;96:304–7.
PubMed
Google Scholar