Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Ad Nut An Int Rev J. 2013;4(2):176–90.
Article
CAS
Google Scholar
DiSilvestro RA. Zinc in relation to diabetes and oxidative disease. J Nutr. 2000;130(5):1509S–11S.
CAS
PubMed
Google Scholar
Khalid N, Ahmed A, Bhatti MS, Randhawa MA, Ahmad A, Rafaqat R. A Question Mark on Zinc Deficiency in 185 Million People in Pakistan—Possible Way Out. Crit Rev Food Sci Nutr. 2014;54(9):1222–40.
Article
CAS
PubMed
Google Scholar
Bhaskaram P. Micronutrient malnutrition, infection, and immunity: an overview. Nutr Rev. 2002;60 suppl 5:S40–5.
Article
PubMed
Google Scholar
Joint FAO, WHO. Vitamin and mineral requirements in human nutrition. Joint Food and Agriculture Organization of the United Nations, World Health Organization; 2005.
Google Scholar
Brown KH, Hess SY. International Zinc Nutrition Consultative Group Technical Document No. 2: systematic reviews of zinc intervention strategies. Food Nutr Bull. 2009;30:S5–S184.
Article
PubMed
Google Scholar
Mahomed K, Bhutta ZA, Middleton P. Zinc supplementation for improving pregnancy and infant outcome, The Cochrane Library. 2007.
Google Scholar
Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci. 2013;18(2):144.
PubMed
PubMed Central
Google Scholar
Caulfield LE, Black RE. Zinc deficiency. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. World Health Org. 2004;1:257–80.
Google Scholar
Walker CF, Ezzati M, Black R. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur J Clin Nutr. 2009;63(5):591–7.
Article
Google Scholar
IZiNCG. Assessment of the risk of zinc deficiency in populations and options for its control. International Zinc Nutrition Consultative Group Technical document #1; 2004.
Gebremedhin S, Enquselassie F, Umeta M. Prevalence of prenatal zinc deficiency and its association with socio-demographic, dietary and health care related factors in Rural Sidama, Southern Ethiopia: A cross-sectional study. BMC Public Health. 2011;11(1):898.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kassu A, Yabutani T, Mulu A, Tessema B, Ota F. Serum zinc, copper, selenium, calcium, and magnesium levels in pregnant and non-pregnant women in Gondar, Northwest Ethiopia. Biol Trace Elem Res. 2008;122(2):97–106.
Article
CAS
PubMed
Google Scholar
Abebe Y, Bogale A, Hambidge KM, Stoecker BJ, Arbide I, Teshome A, Krebs NF, Westcott JE, Bailey KB, Gibson RS. Inadequate intakes of dietary zinc among pregnant women from subsistence households in Sidama, Southern Ethiopia. Public Health Nutr. 2008;11(04):379–86.
PubMed
Google Scholar
Gibson RS, Abebe Y, Stabler S, Allen RH, Westcott JE, Stoecker BJ, Krebs NF, Hambidge KM. Zinc, gravida, infection, and iron, but not vitamin B-12 or folate status, predict hemoglobin during pregnancy in Southern Ethiopia. J Nutr. 2008;138(3):581–6.
CAS
PubMed
PubMed Central
Google Scholar
Mitheko A, Kimiywe J, Njeru PN. Dietary, Socio-economic And Demographic Factors Influencing Serum Zinc Levels Of Pregnant Women At Naivasha Level 4 Hospital Nakuru County, Kenya. 2013.
Google Scholar
Bushra M, Elhassan EM, Ali NI, Osman E, Bakheit KH, Adam II. Anaemia, zinc and copper deficiencies among pregnant women in central Sudan. Biol Trace Elem Res. 2010;137(3):255–61.
Article
CAS
PubMed
Google Scholar
Engle-Stone R, Ndjebayi AO, Nankap M, Killilea DW, Brown KH. Stunting prevalence, plasma zinc concentrations, and dietary zinc intakes in a nationally representative sample suggest a high risk of zinc deficiency among women and young children in Cameroon. J Nutr. 2014;144(3):382–91.
Article
CAS
PubMed
Google Scholar
Pathak P,KU, Dwivedi SN, Singh R. Serum zinc levels amongst pregnant women in a rural block of Haryana state, India. Asia Pac J Clin Nutr. 2008;17:2.
Google Scholar
Jiang T, Christian P, Khatry SK, Wu L, West KP. Micronutrient deficiencies in early pregnancy are common, concurrent, and vary by season among rural Nepali pregnant women. J Nutr. 2005;135(5):1106–12.
CAS
PubMed
Google Scholar
Salimi S, Yaghmaei M, Joshaghani H, Mansourian A. Study of zinc deficiency in pregnant women. Iranian J Pub Health. 2004;33(3):15–8.
CAS
Google Scholar
Shah D, Sachdev H. Effect of gestational zinc deficiency on pregnancy outcomes: summary of observation studies and zinc supplementation trials. Br J Nutr. 2001;85(S2):S101–8.
Article
CAS
PubMed
Google Scholar
Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One. 2012;7(11):e50568.
Article
PubMed
PubMed Central
Google Scholar
FAO. Guidelines for measuring household and individual dietary diversity. Food and Agriculture Organization of the United Nations; 2011.
International Zinc Nutrition Consultative Group., Assessing population zinc status with serum zinc concentration. IZiNCG Technical Brief, 2007(2).
Earl R, Woteki CE. Iron Deficiency Anemia: Recommended Guidelines for the Prevention, Detection, and Management Among US Children and Women of Childbearing Age. Washington, D.C.: National Academy Press; 1994.
Google Scholar
Nestel P. Adjusting hemoglobin values in program surveys. Washington, DC: International Nutritional Anaemia Consultative Group, ILSI Human Nutrition Institute; 2002. p. 2–4.
Google Scholar
King JC. Determinants of maternal zinc status during pregnancy. Am J Clin Nutr. 2000;71(5):1334s–43s.
CAS
PubMed
Google Scholar
World Health Organization. Bench aids for the diagnosis of intestinal parasites. 1994.
Google Scholar
Stoecker B, Abebe Y, Hubbs-Tait L, Kennedy T, Gibson R, Arbide I, Teshome A, Westcott J, Krebs N, Hambidge K. Zinc status and cognitive function of pregnant women in Southern Ethiopia. Eur J Clin Nutr. 2009;63(7):916–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pathak P, Kapil U, Kapoor SK, Saxena R, Kumar A, Gupta N, Dwivedi SN, Singh R, Singh P. Prevalence of multiple micronutrient deficiencies amongst pregnant women in a rural area of Haryana. Indian J Pediat. 2004;71(11):1007–14.
Article
PubMed
Google Scholar
Mohamed AA, Ali AAA, Ali NI, Abusalama EH, Elbashir MI, Adam I. Zinc, parity, infection, and severe anemia among pregnant women in Kassla, Eastern Sudan. Biol Trace Elem Res. 2011;140(3):284–90.
Article
CAS
PubMed
Google Scholar
Gibson RS, Huddle J-M. Suboptimal zinc status in pregnant Malawian women: its association with low intakes of poorly available zinc, frequent reproductive cycling, and malaria. Am J Clin Nutr. 1998;67(4):702–9.
CAS
PubMed
Google Scholar
Nguyen VQ, Goto A, Nguyen TVT, Vo KT, Ta TMT, Nguyen TNT, et al. Prevalence and correlates of zinc deficiency in pregnant Vietnamese women in Ho Chi Minh City. Asia Pac J Clin Nutr. 2013;22:4.
Google Scholar
Shamim AA, Kabir A, Merrill RD, Ali H, Rashid M, Schulze K, Labrique A, West KP, Christian P. Plasma zinc, vitamin B12 and α-tocopherol are positively and plasma γ-tocopherol is negatively associated with Hb concentration in early pregnancy in north-west Bangladesh. Public Health Nutr. 2013;16(08):1354–61.
Article
PubMed
Google Scholar
Deshpande JD, Joshi MM, Giri PA. Zinc: The trace element of major importance in human nutrition and health. Int J Med Sci Public Health. 2013;2(1):1–6.
Article
Google Scholar
Rathi SS, Srinivas M, Grover J, Mitra D, Vats V, Sharma J. Zinc levels in women and newborns. Indian J Pediat. 1999;66(5):681–4.
Article
CAS
PubMed
Google Scholar
Meram I, Bozkurt AI, Ahi S, Ozgur S. Plasma copper and zinc levels in pregnant women in Gaziantep, Turkey. Saudi Med J. 2003;24(10):1121–5.
PubMed
Google Scholar
Brown KH, Wuehler SE, Peerson JM. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutrition Bulletin. 2001;22(2):113–25.
Article
Google Scholar
Brown KH, Rivera J, Bhutta Z, Gibson R, King J, Lönnerdal B, Ruel M, Sandtröm B, Wasantwisut E, Hotz C. International Zinc Nutrition Consultative Group (IZiNCG) technical document# 1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull. 2004;25(1 Suppl 2):S99–S203.
PubMed
Google Scholar
Nriagu J: Zinc deficiency in human health. [http://www.extranet.elsevier.com/homepage_about/mrwd/nvrn/Zinc%20Deficiency%20in%20Humans.pdf]
Gibson RS. Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc. 2006;65:51–60.
Article
CAS
PubMed
Google Scholar
Lönnerdal B. Dietary factors influencing zinc absorption. J Nutr. 2000;130(5):1378S–83S.
PubMed
Google Scholar
Cakmak I. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. J Trace Elem Med Biol. 2009;23(4):281–9.
Article
CAS
PubMed
Google Scholar
Lambein F, Haque R, Khan JK, Kebede N, Kuo Y-H. From soil to brain: zinc deficiency increases the neurotoxicity of Lathyrus sativus and may affect the susceptibility for the motorneurone disease neurolathyrism. Toxicon. 1994;32(4):461–6.
Article
CAS
PubMed
Google Scholar
Borna S, Haghollahi F, Golestan B, Norouzi M, Hanachi P, Shariat M, Sh N. A comparative study of Zinc deficiency prevalence in pregnant and non pregnant women. Tehran Univ Med Sci. 2009;67:5.
Google Scholar
De Jong N, Romano ABA, Gibson RS. Zinc and iron status during pregnancy of Filipino women. Asia Pac J Clin Nutr. 2002;11(3):186–93.
Article
PubMed
Google Scholar
Folin M, Contiero E, Vaselli GM. Zinc content of normal human serum and its correlation with some hematic parameters. Biometals. 1994;7(1):75–9.
Article
CAS
PubMed
Google Scholar