Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB, et al. Effects of chocolate, cocoa, and flavanols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95:740–51.
Article
CAS
PubMed
Google Scholar
Larsson SC, Virtamo J, Wolk A. Chocolate consumption and risk of stroke: a prospective cohort of men and meta-analysis. Neurology. 2012;79:1223–9.
Article
CAS
PubMed
Google Scholar
Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain. 2001;124:1720–33.
Article
CAS
PubMed
Google Scholar
Francis ST, Head K, Morris PG, Macdonald IA. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol. 2006;47:S215–20.
Article
CAS
PubMed
Google Scholar
Messier C. Glucose improvement of memory: a review. Eur J Pharmacol. 2004;490:33–57.
Article
CAS
PubMed
Google Scholar
Riby LM. The effects of age, glucose ingestion and gluco-regulatory control on episodic memory. Age Ageing. 2004;33:483–7.
Article
PubMed
Google Scholar
Maridakis V, Herring MP, O’Connor P. Sensitivity to change in cognitive performance and mood measures of energy and fatigue in response to differing doses of caffeine or breakfast. Int J Neurosci. 2009;119:975–94.
Article
CAS
PubMed
Google Scholar
Nehlig A. Is caffeine a cognitive enhancer? J Alzheimers Dis. 2010;20:85–94.
Google Scholar
Olson CA, Thornton JA, Adam GE, Lieberman HR. Effects of 2 adenosine antagonists, quercetin and caffeine, on vigilance and mood. J Clin Psychopharmacol. 2010;30:573–8.
Article
CAS
PubMed
Google Scholar
Adan A, Serra-Grabulosa JM. Effects of caffeine and glucose, alone and combined, on cognitive performance. Hum Psychopharmacol Clin Exp. 2010;25:310–7.
Article
CAS
Google Scholar
Haskell CF, Kennedy DO, Milne AL, Wesnes KA, Scholey AB. The effects of l-theanine, caffeine and their combination on cognition and mood. Biol Psychol. 2008;77:113–22.
Article
PubMed
Google Scholar
Smit HJ, Rogers PJ. Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology (Berl). 2000;152:167–73.
Article
CAS
Google Scholar
Scholey AB, Kennedy DO. Cognitive and physiological effects of an “energy drink”: an evaluation of the whole drink and of glucose, caffeine and herbal flavouring fractions. Psychopharmacology (Berl). 2004;176:320–30.
Article
CAS
Google Scholar
Mitchell ES, Slettenaar M, Vd Meer N, Transler C, Jans L, Quadt F, et al. Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure. Physiol Behav. 2011;104:816–22.
Article
CAS
PubMed
Google Scholar
Young HA, Benton D. Caffeine can decrease subjective energy depending on the vehicle with which it is consumed and when it is measured. Psychopharmacology (Berl). 2013;228:243–54.
Article
CAS
Google Scholar
Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424:1013.
Article
CAS
PubMed
Google Scholar
Massee LA, Ried K, Pase M, Travica N, Yoganathan J, Scholey A, et al. The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: a randomized, controlled trial. Front Pharmacol. 2015;6:1–14.
Article
CAS
Google Scholar
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.
Article
CAS
PubMed
Google Scholar
Smit HJ. Theobromine and the pharmacology of cocoa. Hanbook Exp Pharmacol. 2011;200:201–34.
Article
CAS
Google Scholar
Meeusen R. Exercise, nutrition and the brain. Sports Med. 2014;44:47–56.
Article
PubMed Central
Google Scholar
Scholey A, Owen L. Effects of chocolate on cognitive function and mood: a systematic review. Nutr Rev. 2013;71:665–81.
Article
PubMed
Google Scholar
Wang J, Varghese M, Ono K, Yamada M, Levine S, Tzavaras N, et al. Cocoa extracts reduce oligomerization of amyloid-beta: Implications for cognitive improvement in alzheimer’s disease. J Alzheimers Dis. 2014;41:643–50.
CAS
PubMed
Google Scholar
Camfield DA, Scholey A, Pipingas A, Silberstein R, Kras M, Nolidin K, et al. Steady state visually evoked potential (SSVEP) topography changes associated with cocoa flavanol consumption. Physiol Behav. 2012;105:948–57.
Article
CAS
PubMed
Google Scholar
Field DT, Williams CM, Butler LT. Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav. 2011;103:255–60.
Article
CAS
PubMed
Google Scholar
Tomporowski PD, Tinsley VF. Effects of memory demand and motivation on sustained attention in young and older adults. Am J Psychol. 1996;109:187.
Article
CAS
PubMed
Google Scholar
Scholey AB, French SJ, Morris PJ, Kennedy DO, Milne AL, Haskell CF. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol. 2010;24:1505–14.
Article
CAS
PubMed
Google Scholar
Judelson DA, Preston AG, Miller DL, Muñoz CX, Kellogg MD, Lieberman HR. Effects of theobromine and caffeine on mood and vigilance. J Clin Psychopharmacol. 2013;33:499–506.
Article
CAS
PubMed
Google Scholar
Deaconson TF, O’hair DP, Levy MF, Lee MB, Schueneman AL, Condon RE. Sleep deprivation and resident performance. J Am Med Assoc. 1988;260:1721–7.
Article
CAS
Google Scholar
Jewett ME, Dijk D, Kronauer RE, Dinges DF. Dose-response relationship between sleep duration and human psychomotor vigilance and subjective alertness.pdf. Sleep. 1998;22:171–9.
Google Scholar
Minkel JD, Banks S, Htaik O, Moreta MC, Jones CW, McGlinchey EL, et al. Sleep deprivation and stressors: evidence for elevated negative affect in response to mild stressors when sleep deprived. Emotion. 2012;12:1015–20.
Article
PubMed
PubMed Central
Google Scholar
McNair DM, Lorr M, Heuchert JWP, Droppelman LE. Profile of mood states: brief form. North Tonawanda: Multi-Health Systems; 2003.
Google Scholar
Motl RW, O’Connor PJ, Tubandt L, Puetz T, Ely MR. Effect of caffeine on leg muscle pain during cycling exercise among females. Med Sci Sports Exerc. 2006;38:598–604.
Article
CAS
PubMed
Google Scholar
O’Connor PJ, Caravalho AL, Freese EC, Cureton KJ. Grape consumption’s effects on fitness, muscle injury, mood, and perceived health. Int J Sport Nutr Exerc. 2013;23:57–64.
Article
Google Scholar
D’Amico EJ, Neilands TB, Zambarano R. Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure. Behav Res Methods Instrum Comput. 2001;33:479–84.
Article
PubMed
Google Scholar
Ptolemy AS, Tzioumis E, Thomke A, Rifai S, Kellogg M. Quantification of theobromine and caffeine in saliva, plasma and urine via liquid chromatography–tandem mass spectrometry: a single analytical protocol applicable to cocoa intervention studies. J Chromatogr B. 2010;878:409–16.
Article
CAS
Google Scholar
Moore RD, Romine MW, O’Connor PJ, Tomporowski PD. The influence of exercise-induced fatigue on cognitive function. J Sports Sci. 2012;30:841–50.
Article
PubMed
Google Scholar
Pilcher JJ, Huffcutt AI. Effects of sleep deprivation on performance: a meta-analysis. Sleep. 1996;19:318–26.
CAS
PubMed
Google Scholar
Cohen J. A power primer. Psychol Bull. 1992;112:155–9.
Article
CAS
PubMed
Google Scholar
Matthews G, Davies DR. Individual differences in energetic arousal and sustained attention: a dual-task study. Personal Individ Differ. 2001;31:575–89.
Article
Google Scholar
Pase MP, Scholey AB, Pipingas A, Kras M, Nolidin K, Gibbs A, et al. Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. J Psychopharmacol (Oxf). 2013;27:451–8.
Article
CAS
Google Scholar
Alsene K, Deckert J, Sand P, de Wit H. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2003;28:1694–702.
Article
CAS
PubMed
Google Scholar
Rogers PJ, Hohoff C, Heatherley SV, Mullings EL, Maxfield PJ, Evershed RP, et al. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology. 2010;35:1973–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander SPH. Flavonoids as antagonists at A1 adenosine receptors. Phytother Res. 2006;20:1009–12.
Article
CAS
PubMed
Google Scholar
Bouayed J. Polyphenols: A potential new strategy for the prevention and treatment of anxiety and depression. Curr. Nutr. Food Sci. 2010;6:13–8.
Shi D, Daly JW. Chronic effects of xanthines on levels of central receptors in mice. Cell Mol Neurobiol. 1999;19:719–32.
Article
CAS
PubMed
Google Scholar
Foxe JJ, Morie KP, Laud PJ, Rowson MJ, de Bruin EA, Kelly SP. Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology. 2012;62:2320–7.
Article
CAS
PubMed
Google Scholar
Hewlett P, Smith A. Effects of repeated doses of caffeine on performance and alertness: new data and secondary analyses. Hum Psychopharmacol Clin Exp. 2007;22:339–50.
Article
CAS
Google Scholar
Parasuraman R, Mouloua M. Interaction of signal discriminability and task type in vigilance decrement. Percept Psychophys. 1987;41:17–22.
Article
CAS
PubMed
Google Scholar
Einöther SJL, Giesbrecht T. Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl). 2013;225:251–74.
Article
Google Scholar
Lieberman HR, Wurtman RJ, Emde GG, Roberts C, Coviella ILG. The effects of low doses of caffeine on human performance and mood. Psychopharmacology (Berl). 1987;92:308–12.
Article
CAS
Google Scholar
Nehlig A, Daval J-L, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev. 1992;17:139–70.
Article
CAS
PubMed
Google Scholar
Schaffer S, Halliwell B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr. 2012;7:99–109.
Article
CAS
PubMed
Google Scholar
Spencer JPE. Beyond antioxidants: the cellular and molecular interactions of flavonoids and how these underpin their actions on the brain. Proc Nutr Soc. 2010;69:244.
Article
CAS
PubMed
Google Scholar
Sorond FA, Lipsitz LA, Hollenberg NK, Fisher ND. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat. 2008;4:433.
CAS
PubMed
PubMed Central
Google Scholar
Jacobson AM, Ryan CM, Cleary PA, Waberski BH, Weinger K, Musen G, et al. Biomedical risk factors for decreased cognitive functioning in type 1 diabetes: an 18 year follow-up of the diabetes control and complications trial (DCCT) cohort. Diabetologia. 2011;54:245–55.
Article
CAS
PubMed
Google Scholar
Kennedy DO, Wightman EL, Reay JL, Lietz G, Okello EJ, Wilde A, et al. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr. 2010;91:1590–7.
Article
CAS
PubMed
Google Scholar
Carlson NR. Physiology of Behavior. 11th ed. New York: Pearson; 2012.
Field AS, Laurienti PJ, Yen Y-F, Burdette JH, Moody DM. Dietary caffeine consumption and withdrawal: confounding variables in quantitative cerebral perfusion studies? Radiology. 2003;227:129–35.
Article
PubMed
Google Scholar
Kennedy DO, Haskell CF. Cerebral blood flow and behavioural effects of caffeine in habitual and non-habitual consumers of caffeine: a near infrared spectroscopy study. Biol Psychol. 2011;86:298–306.
Article
PubMed
Google Scholar
Koch CE, Ganjam GK, Steger J, Legler K, Stöhr S, Schumacher D, et al. The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling. Br J Nutr. 2013;109:1040–51.
Article
CAS
PubMed
Google Scholar
Lane JD. Caffeine, glucose metabolism, and type 2 diabetes. J Caffeine Res. 2011;1:23–8.
Article
CAS
Google Scholar
Park C-A, Kang C-K, Son Y-D, Choi E-J, Kim S-H, Oh S-T, et al. The effects of caffeine ingestion on cortical areas: functional imaging study. Magn Reson Imaging. 2014;32:366–71.
Article
CAS
PubMed
Google Scholar
Tomasi D, Volkow ND, Wang R, Telang F, Wang G-J, Chang L, et al. Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention. PLoS One. 2009;4:e6102.
Article
PubMed
PubMed Central
Google Scholar
Kaasinen V, Aalto S, Nagren K, Rinne JO. Expectation of caffeine induces dopaminergic responses in humans. Eur J Neurosci. 2004;19:2352–6.
Article
PubMed
Google Scholar
Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl). 2007;191:461–82.
Article
CAS
Google Scholar
Ellingson LD, Kuffel AE, Vack NJ, Cook DB. Active and sedentary behaviors influence feelings of energy and fatigue in women. Med Sci Sports Exerc. 2014;46:192–200.
Article
PubMed
Google Scholar
Nobre AC, Coull JT, Frith CD, Mesulam MM. Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nat Neurosci. 1999;2:11–2.
Article
CAS
PubMed
Google Scholar
Kringelbach ML, O’Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex. 2003;13:1064–71.
Article
CAS
PubMed
Google Scholar
Blanchard J, Sawers SJA. The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol. 1983;24:93–8.
Article
CAS
PubMed
Google Scholar