Banerjee T, Crews DC, Wesson DE, Tilea A, Saran R, Rios Burrows N, et al. Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol. 2014;15(1):137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kahleova H, McCann J, Alwarith J, Rembert E, Tura A, Holubkov R, et al. A plant-based diet in overweight adults in a 16-week randomized clinical trial: the role of dietary acid load. Clin Nutr ESPEN. 2021;44:150–8.
Article
PubMed
Google Scholar
Vormann J, Remer T. Dietary, metabolic, physiologic, and disease-related aspects of acid-base balance: foreword to the contributions of the second international acid-base symposium. J Nutr. 2008;138(2):413S–4S.
Article
CAS
PubMed
Google Scholar
Williams RS, Kozan P, Samocha-Bonet D. The role of dietary acid load and mild metabolic acidosis in insulin resistance in humans. Biochimie. 2016;124:171–7.
Article
CAS
PubMed
Google Scholar
Müller A, Zimmermann-Klemd AM, Lederer A-K, Hannibal L, Kowarschik S, Huber R, et al. A vegan diet is associated with a significant reduction in dietary acid load: post hoc analysis of a randomized controlled trial in healthy individuals. Int J Environ Res Public Health. 2021;18(19):9998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remer T, , Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 1995;95:791–797.
Article
CAS
PubMed
Google Scholar
Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr. 2011;30(4):416–21.
Article
CAS
PubMed
Google Scholar
Storz MA, Ronco AL. Reduced dietary acid load in U.S. vegetarian adults: Results from the National Health and Nutrition Examination Survey. Food Science & Nutrition. [cited 2022 Apr 12];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/fsn3.2825
Lee KW, Shin D. Positive association between dietary acid load and future insulin resistance risk: findings from the Korean genome and epidemiology study. Nutr J. 2020;19(1):137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scialla JJ, Appel LJ, Astor BC, Miller ER, Beddhu S, Woodward M, et al. Estimated net endogenous acid production and serum bicarbonate in African Americans with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(7):1526–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hejazi E, Emamat H, Sharafkhah M, Saidpour A, Poustchi H, Sepanlou S, et al. Dietary acid load and mortality from all causes, CVD and cancer: results from the Golestan cohort study. Br J Nutr. 2021:1–7.
Park Y-MM, Steck SE, Fung TT, Merchant AT, Elizabeth Hodgson M, Keller JA, et al. Higher diet-dependent acid load is associated with risk of breast cancer: findings from the sister study. Int J Cancer. 2019;144(8):1834–43.
Article
CAS
PubMed
Google Scholar
Robey IF. Examining the relationship between diet-induced acidosis and cancer. Nutr Metab. 2012;9(1):72.
Article
CAS
Google Scholar
Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer. 2012;12(7):487–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillies RJ, Pilot C, Marunaka Y, Fais S. Targeting acidity in cancer and diabetes. Biochim Biophys Acta Rev Cancer. 2019;1871(2):273–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, et al. Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis. 2008;25(4):411–25.
Article
CAS
PubMed
Google Scholar
Keramati M, Kheirouri S, Musazadeh V, Alizadeh M. Association of high dietary acid load with the risk of cancer: a systematic review and meta-analysis of observational studies. Front Nutr. 2022;9 [cited 2022 Apr 12]. Available from: https://www.frontiersin.org/article/10.3389/fnut.2022.816797.
Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33(4):547–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol. 2020;13(1):64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronco AL, Storz MA, Martínez-López W, Calderón JM, Golomar W. High dietary acid load is associated with prostate cancer risk: an epidemiological study. WCRJ. 2021;8:e2119. https://doi.org/10.32113/wcrj_202111_2119.
Article
Google Scholar
Shi L-W, Wu Y-L, Hu J-J, Yang P-F, Sun W-P, Gao J, et al. Dietary acid load and the risk of pancreatic cancer: a prospective cohort study. Cancer Epidemiol Biomark Prev. 2021;30(5):1009–19.
Article
CAS
Google Scholar
Ronco A, Calderón J, Mendoza B. Dietary acid load and breast cancer risk: a case-control study in Uruguay. Eur J Cancer. 2020;138:S122.
Article
Google Scholar
Ronco AL, Martínez-López W, Calderón JM, Golomar W. Dietary acid load and lung cancer risk: a case-control study in men. Cancer Treat Res Commun. 2021;28:100382.
Article
PubMed
Google Scholar
Jafari Nasab S, Rafiee P, Bahrami A, Rezaeimanesh N, Rashidkhani B, Sohrab G, et al. Diet-dependent acid load and the risk of colorectal cancer and adenoma: a case-control study. Public Health Nutr. 2021;24(14):4474–81.
Article
PubMed
Google Scholar
Ronco AL, Martínez-López W, Calderón JM, Mendoza BA. Dietary acid load and colorectal cancer risk: a case-control study. World Cancer Res J. 2020;7:e1750.
Google Scholar
Milajerdi A, Shayanfar M, Benisi-Kohansal S, Mohammad-Shirazi M, Sharifi G, Tabibi H, et al. A case-control study on dietary acid load in relation to glioma. Nutr Cancer. 2021;29:1–8.
CAS
Google Scholar
Wu T, Hsu F-C, Pierce JP. Increased acid-producing diet and past smoking intensity are associated with worse prognoses among breast cancer survivors: a prospective cohort study. J Clin Med. 2020;9(6):1817.
Article
PubMed Central
Google Scholar
Tessou KD, Lemus H, Hsu F-C, Pierce J, Hong S, Brown L, et al. Independent and joint impacts of acid-producing diets and depression on physical health among breast cancer survivors. Nutrients. 2021;13(7):2422.
Article
PubMed
PubMed Central
Google Scholar
Wu T, Seaver P, Lemus H, Hollenbach K, Wang E, Pierce JP. Associations between dietary acid load and biomarkers of inflammation and hyperglycemia in breast cancer survivors. Nutrients. 2019;11(8):E1913.
Article
CAS
PubMed
Google Scholar
Chronister BNC, Wu T, Santella RM, Neugut AI, Wolff MS, Chen J, et al. Dietary acid load, serum polychlorinated biphenyl levels, and mortality following breast cancer in the Long Island breast cancer study project. Int J Environ Res Public Health. 2022;19(1):374.
Article
CAS
Google Scholar
Wu T, Hsu F-C, Pierce JP. Acid-producing diet and depressive symptoms among breast cancer survivors: a longitudinal study. Cancers (Basel). 2020;12(11):E3183.
Article
CAS
Google Scholar
NHANES - About the National Health and Nutrition Examination Survey. 2020 [cited 2022 Feb 11]. Available from: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
NHANES - Participants - About. 2021 [cited 2022 Feb 11]. Available from: https://www.cdc.gov/nchs/nhanes/participant/participant-about.htm
Albanes D, Blair A, Taylor PR. Physical activity and risk of cancer in the NHANES I population. Am J Public Health. 1989;79(6):744–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch BM, Dunstan DW, Healy GN, Winkler E, Eakin E, Owen N. Objectively measured physical activity and sedentary time of breast cancer survivors, and associations with adiposity: findings from NHANES (2003–2006). Cancer Causes Control. 2010;21(2):283–8.
Article
PubMed
Google Scholar
Marinac CR, Natarajan L, Sears DD, Gallo LC, Hartman SJ, Arredondo E, et al. Prolonged nightly fasting and breast cancer risk: findings from NHANES (2009–2010). Cancer Epidemiol Biomark Prev. 2015;24(5):783–9.
Article
CAS
Google Scholar
Deshmukh AA, Shirvani SM, Likhacheva A, Chhatwal J, Chiao EY, Sonawane K. The association between dietary quality and overall and cancer-specific mortality among cancer survivors, NHANES III. JNCI Cancer Spectr. 2018;2(2) [cited 2022 Feb 11]. Available from: https://academic.oup.com/jncics/article/2/2/pky022/5026131.
Su LJ, Arab L. Nutritional status of folate and colon cancer risk: evidence from NHANES I epidemiologic follow-up study. Ann Epidemiol. 2001;11(1):65–72.
Article
CAS
PubMed
Google Scholar
Petrova D, Catena A, Rodríguez-Barranco M, Redondo-Sánchez D, Bayo-Lozano E, Garcia-Retamero R, et al. Physical comorbidities and depression in recent and long-term adult cancer survivors: NHANES 2007–2018. Cancers. 2021;13(13):3368.
Article
PubMed
PubMed Central
Google Scholar
Karavasiloglou N, Pestoni G, Faeh D, Rohrmann S. Post-diagnostic diet quality and mortality in females with self-reported history of breast or gynecological cancers: results from the third National Health and Nutrition Examination Survey (NHANES III). Nutrients. 2019;11(11):2558.
Article
CAS
PubMed Central
Google Scholar
NHANES - NCHS Research Ethics Review Board Approval. 2021 [cited 2022 Feb 11]. Available from: https://www.cdc.gov/nchs/nhanes/irba98.htm
NHANES 2007–2008: Dietary Interview - Individual Foods, First Day Data Documentation, Codebook, and Frequencies. [cited 2022 Apr 13]. Available from: https://wwwn.cdc.gov/Nchs/Nhanes/2007-2008/DR1IFF_E.htm
NHANES - Measuring Guides. 2019 [cited 2022 Apr 13]. Available from: https://www.cdc.gov/nchs/nhanes/measuring_guides_dri/measuringguides.htm
AMPM—USDA Automated Multiple-Pass Method: USDA ARS. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/ampm-usda-automatedmultiple-pass-method/ (Accessed on 31 Jan 2022).
Centers for Disease Control and Prevention, National Center for Health Statistics. National Health and Nutrition Examination Survey MEC in-person dietary interviewers procedure manual. Hyattsville: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2008. Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_dietarymec.pdf (Accessed on 5 Feb 2022)
Google Scholar
Frassetto LA, Todd KM, Morris RC, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr. 1998;68:576–83.
Article
CAS
PubMed
Google Scholar
Remer T, Dimitriou T, Manz F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am J Clin Nutr. 2003;77(5):1255–60.
Article
CAS
PubMed
Google Scholar
Parmenter BH, Slater GJ, Frassetto LA. Accuracy and precision of estimation equations to predict net endogenous acid excretion using the Australian food database. Nutr Diet. 2017;74(3):308–12.
Article
PubMed
Google Scholar
Parmenter BH, Dymock M, Banerjee T, Sebastian A, Slater GJ, Frassetto LA. Performance of predictive equations and biochemical measures quantifying net endogenous acid production and the potential renal acid load. Kidney Int Rep. 2020;5(10):1738–45.
Article
PubMed
PubMed Central
Google Scholar
Parker JD, Talih M, Malec DJ, Beresovsky V, Carroll M, Gonzalez JF, et al. National Center for Health Statistics data presentation standards for proportions. Vital Health Stat 2. 2017;(175):1–22.
Ward BW. kg_nchs: a command for Korn–Graubard confidence intervals and National Center for Health Statistics’ data presentation standards for proportions. Stata J. 2019;19(3):510–22.
Article
PubMed
PubMed Central
Google Scholar
Alam I, Alam I, Paracha PI, Pawelec G. Higher estimates of daily dietary net endogenous acid production (NEAP) in the elderly as compared to the young in a healthy, free-living elderly population of Pakistan. CIA. 2012;7:565–73.
Article
CAS
Google Scholar
Lemann J. Relationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: a review. Nephron. 1999;81(Suppl 1):18–25.
Article
CAS
PubMed
Google Scholar
Gannon RHT, Millward DJ, Brown JE, Macdonald HM, Lovell DP, Frassetto LA, et al. Estimates of daily net endogenous acid production in the elderly UK population: analysis of the National Diet and Nutrition Survey (NDNS) of British adults aged 65 years and over. Br J Nutr. 2008;100(3):615–23.
Article
CAS
PubMed
Google Scholar
Pinto BM, Eakin E, Maruyama NC. Health behavior changes after a cancer diagnosis: what do we know and where do we go from here? Ann Behav Med. 2000;22(1):38.
Article
CAS
PubMed
Google Scholar
Lei Y-Y, Ho SC, Cheng A, Kwok C, Cheung KL, He Y-Q, et al. Dietary changes in the first 3 years after breast cancer diagnosis: a prospective Chinese breast cancer cohort study. Cancer Manag Res. 2018;10:4073–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fassier P, Zelek L, Lécuyer L, Bachmann P, Touillaud M, Druesne-Pecollo N, et al. Modifications in dietary and alcohol intakes between before and after cancer diagnosis: results from the prospective population-based NutriNet-Santé cohort. Int J Cancer. 2017;141(3):457–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaharudin SH, Sulaiman S, Shahril MR, Emran NA, Akmal SN. Dietary changes among breast cancer patients in Malaysia. Cancer Nurs. 2013;36(2):131–8.
Article
PubMed
Google Scholar
Tan SY, Wong HY, Vardy JL. Do cancer survivors change their diet after cancer diagnosis? Support Care Cancer. 2021;29(11):6921–7.
Article
PubMed
Google Scholar
Remer T, Berkemeyer S, Rylander R, Vormann J. Muscularity and adiposity in addition to net acid excretion as predictors of 24-h urinary pH in young adults and elderly. Eur J Clin Nutr. 2007;61(5):605–9.
Article
CAS
PubMed
Google Scholar
Lemann JrJ. Relationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: a review. NEF. 1999;81(Suppl. 1):18–25.
CAS
Google Scholar
McAndrew NP, Bottalico L, Mesaros C, Blair IA, Tsao PY, Rosado JM, et al. Effects of systemic inflammation on relapse in early breast cancer. Npj Breast Cancer. 2021;7(1):1–10.
Article
CAS
Google Scholar
Ayoub NM, Jaradat SK, Alhusban A, Tahaineh L. <p>glycosylated hemoglobin A1c is associated with anthropometric measurements and tumor characteristics in breast cancer patients. IJWH. 2020;12:139–49.
Article
CAS
Google Scholar
Osuna-Padilla IA, Leal-Escobar G, Garza-García CA, Rodríguez-Castellanos FE. Dietary acid load: mechanisms and evidence of its health repercussions. Nefrologia (Engl Ed). 2019;39(4):343–54.
Article
CAS
Google Scholar
Abshirini M, Bagheri F, Mahaki B, Siassi F, Koohdani F, Safabakhsh M, et al. The dietary acid load is higher in subjects with prediabetes who are at greater risk of diabetes: a case–control study. Diabetol Metab Syndr. 2019;11(1):52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sia P, Plumb TJ, Fillaus JA. Type B lactic acidosis associated with multiple myeloma. Am J Kidney Dis. 2013;62(3):633–7.
Article
PubMed
Google Scholar
Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73(5):1524–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cosgrove K, Johnston CS. Examining the impact of adherence to a vegan diet on acid-base balance in healthy adults. Plant Foods Hum Nutr. 2017;72(3):308–13.
Article
CAS
PubMed
Google Scholar
Knurick JR, Johnston CS, Wherry SJ, Aguayo I. Comparison of correlates of bone mineral density in individuals adhering to lacto-ovo, vegan, or omnivore diets: a cross-sectional investigation. Nutrients. 2015;7(5):3416–26.
Article
CAS
PubMed
PubMed Central
Google Scholar