Skip to main content

Association between dietary total antioxidant capacity and the risk of stroke: a nested case-control study



Oxidative stress after ischemic stroke contribute to neuronal cell injury. Unhealthy and unbalanced dietary patterns can increase the risk of several diseases, including stroke and cardiometabolic ones. However, the association between dietary total antioxidant capacity (DTAC) of antioxidant and stroke is controversial. Our study aimed to establish a correlation between DTAC and its impact on the occurrence of stroke.


This nested case–control study included 79 stroke cases and 158 healthy controls. We used data from the Fasa Adults Cohort Study (FACS) comprising 10,035 individuals at baseline. To assess the nutritional status of each individual, a 125-item food frequency questionnaire (FFQ) has been used to evaluate their dietary habits and intakes over the past year. DTAC was calculated using the ferric-reducing antioxidant power (FRAP) international databases. The stroke was confirmed by an experienced neurologist using standard imaging methods. Conditional logistic regression analyses were performed to evaluate the association between DTAC and stroke.


The assessment of DTAC revealed that there was no statistically significant distinction between cases (mean ± SD: 5.31 ± 2.65) and controls (5.16 ± 2.80) with a p-value of 0.95. Even after adjusting for the potentially important confounding factors such as age, sex, event time, energy intake, smoking, hypertension, and diabetes, the association remains non-significant (adjusted odds ratio (OR) = 1.06, 95% CI: 0.94, 1.20, p-value = 0.33).


Our results did not confirm a significant link between DTAC and stroke risk. These findings emphasize the intricate interplay of factors influencing stroke risk and highlight the need for further research to unravel these relationships more comprehensively.

Peer Review reports


Stroke is a global public health concern, with major effects on survivors’ quality of life [1]. Although the incidence of stroke has decreased in some Western countries, it has increased in developing countries, notably those in the Middle East, in recent decades [2]. While the precise prevalence of stroke in Iran is unknown, a systematic review suggests that 40 people out of every 100,000 have this disease [3]. As a result, primary stroke prevention has emerged as a critical public health priority, particularly in developing countries [4].

Hypertension, diabetes, dyslipidemia, cardiovascular disease, obesity, physical inactivity, and smoking are all well-known stroke risk factors [5,6,7,8,9,10]. Lifestyle factors, including eating habits, have been identified as key contributors to stroke prevention or development [5, 11, 12]. Diets with high amounts of saturated or trans fatty acids, as well as fried foods, are associated with increased stroke risk [13,14,15]. On the other hand, it has been shown that following diets with high amounts of fruit and vegetable consumption acts as a protective factor against the risk of stroke [16].

Adhering to an active lifestyle and a healthy diet is one of the most important preventive measures against stroke [17]. Apart from certain foods like fruits, vegetables, grains, and olive oil, eating habits that are centered on a plant-based diet have been demonstrated to provide protection against stroke. Examples of such diets include the Mediterranean diet and the Dietary Approaches to Stop Hypertension (DASH) diet [18, 19]. Also, there is a correlation between the intake of antioxidant and the risk of stroke, as indicated by several studies [20,21,22]. Oxidative stress, caused by an imbalance between the production of reactive oxygen species (ROS) and the body’s antioxidant defense mechanisms, has been implicated in the pathogenesis of stroke [23, 24]. Antioxidants are compounds that scavenge ROS and protect cells from oxidative damage and have been suggested to play a role in reducing the risk of stroke [25, 26]. ROS contribute to ischemic damage via a variety of mechanisms, including inducing lipid peroxidation in the mitochondrial membrane and enhancing polymerization and polysaccharide breakdown [23, 27,28,29]. Cross-linking and oxidation have a negative impact on macromolecules such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA), polysaccharides, and amino acids, causing them to lose their original activity or function. Because of their high reactivity to oxidized lipids and proteins, ROS disrupt endothelial cells and increase blood-brain barrier (BBB) permeability. They also promote inflammation and an immune response by modulating the expression of pro-inflammatory mediators, exacerbating brain injury. Furthermore, ROS contribute to the hastening of delayed neuronal death [23, 29, 30].

Dietary total antioxidant capacity (DTAC) is a measure of the overall antioxidant capacity of a diet, taking into account the synergistic effects of different antioxidants and their interactions with each other [31, 32]. Evidence from studies, including those conducted among Italian [33] and Iranian populations [22], suggests that higher DTAC levels are associated with a reduced risk of stroke. However, the relationship between DTAC and stroke risk remains a subject of debate. Conflicting findings from multiple studies across different populations have contributed to the controversy [34,35,36]. Furthermore, some studies found no significant association between DTAC and stroke risk in various age groups [35].

Therefore, the association between DTAC and stroke remains controversial. The objective of this study was to examine the correlation between DTAC and the risk of stroke in the Iranian population, after adjusting for potential risk factors.

Materials and methods

Study population

Data for this nested case-control study were obtained from the Fasa Adult Cohort Study (FACS), a long-term population-based study conducted between November 2014 and June 2019. The FACS consisted of 10,035 individuals aged 35 to 70 without physical or mental disabilities. This cohort study aimed to identify risk factors for noncommunicable diseases in this population [37].

After the initial registration, biological samples were collected from the participants. Subsequently, a comprehensive physical examination was conducted, and various anthropometric measurements were taken. Additionally, detailed information about the participants’ demographics, socioeconomic status, lifestyle habits, dietary patterns, and medical histories was obtained through interviews. We excluded patients with more than 10% missing data from our analysis. Also, we excluded patients with reported calorie intake exceeding 4000 kcal or falling below 600 kcal from our analysis.

The study enrolled seventy-nine patients with acute ischemic stroke, diagnosed based on clinical presentation, neurologic examination, and brain imaging results using either computed tomography (CT) or magnetic resonance imaging (MRI) with diffusion-weighted imaging. The control group comprised 158 healthy individuals matched for age, sex, and event time, with no known history of stroke.

Dietary consumption assessment

To assess participants’ typical dietary intake, we utilized a validated Food Frequency Questionnaire (FFQ) consisting of 125 items [37]. This questionnaire was created using popular Iranian foods [38]. The validity and reliability of this questionnaire in stroke patients in Iran has already been investigated and confirmed [39, 40]. Several previous studies have been used this FFQ for evaluation of dietary indices [41, 42]. We opted for the completion of the Food Frequency Questionnaire (FFQ) by the patients’ family members due to several factors. Many of the patients involved in the study were uneducated, and a subset had experienced strokes, rendering them unable to effectively respond to the questionnaire. Given these circumstances, we deemed it more practical and reliable to have their family members provide the dietary information on their behalf. This decision was primarily motivated by the common occurrence of impaired memory or cognitive challenges among stroke patients, which could potentially compromise the accuracy of self-reported dietary intake data. By involving family members in the completion of the FFQ, we aimed to ensure a more comprehensive and accurate assessment of the patients’ dietary habits, thereby enhancing the reliability of our study findings. Participants were requested to indicate the frequency and quantity of each food item consumed on a daily, weekly, monthly, and yearly basis over the past year, taking into account standard portion sizes. These reported frequencies were then converted to daily intake values, which were then converted to grams per day using the Nutritionist IV software (version 7.0). Finally, the total nutrient and total energy intakes were calculated by adding the values obtained from each food item.

Total antioxidant capacity calculation

We calculated the DTAC by referring to previously published studies that provided DTAC values based on the ferric reducing antioxidant power (FRAP) measurements of the 106 specific food items chosen for this study. The FRAP assay measures dietary antioxidants’ ability to convert ferric ions to ferrous ions. These FRAP values are given in millimoles per 100 g of food (mmol/100 g) [43].

When similar food items didn’t exist in Iranian culture (for example, different types of bread), we calculated the overall mean FRAP value for those items. We then multiplied the consumption frequencies of each food item by their corresponding FRAP values and added these products together to calculate the DTAC for each participant.

In our study cohort, physical activity was assessed using the International Physical Activity Questionnaire (IPAQ), a widely recognized instrument endorsed for its validity and reliability by various studies [44]. IPAQ measures physical activities across four domains: activities at work, commuting, housework, and leisure time. This multidimensional approach captures activities ranging from walking to more intense levels of physical exertion.

Ethics approval and consent to participate

Our research protocol followed the guidelines set forth in the Helsinki Declaration, and it received approval from the Fasa University of Medical Sciences Research Council and Ethics Committee (approval code: IR.FUMS.REC.1401.241). Moreover, the participants in our study provided written consent to participate in the research.

Statistical analysis

Data were expressed as mean ± standard deviation and categorical variables were described using numbers (percent). To examine whether the variables are normally distributed, we used from the Kolmogorov–Smirnov test. Based on their DTAC, the participants were divided into tertiles. We used the analysis of covariance (ANCOVA) for continuous variables and the Chi-square test for categorical variables to assess differences in general characteristics among DTAC tertiles and between cases and controls. We used conditional logistic regression in different models to investigate the relationship between DTAC and stroke risk after adjusting according to the most important and clinical variables. First after controlling for SBP and DBP, adjustments were made in the second model for adjusted for energy intake, and smoking. In the other model, additional adjustments included hypertension, diabetes, hyperlipidemia, and overweight. P-values less than 0.05 were considered statistically significant. The Statistical Package for Social Sciences (SPSS Corp, version 20, Chicago, IL, USA) was used for all statistical analyses.


General characteristics of the study population

Overall, data from 79 cases and 158 controls were analyzed. Table 1 provides a comprehensive overview of the demographic and health-related characteristics of the study population, highlighting differences between cases and controls, as well as providing insights into DTAC levels.

Table 1 General characteristics of the study populationa

Firstly, when assessing DTAC, there was no statistically significant distinction between cases and controls (P = 0.957). Gender distribution showed no significant difference, with 57% males among cases and controls (p = 0.998). As measured by metabolic equivalent (MET)-min/day, physical activity levels remained comparable between cases and controls, revealing no statistically significant contrast (P = 0.516).

Furthermore, cases had a significantly higher occurrence of obesity, characterized as having a Body Mass Index (BMI) of ≥ 30 kg/m2, with a prevalence of 63.3%, in contrast to controls, who had a prevalence of 45.6% (P = 0.013). There was a noticeable difference in the use of anticoagulants between cases and controls, as cases had a significantly higher prevalence of 30.0%, while controls had a prevalence of 0.00% (P < 0.001). Additionally, systolic blood pressure (SBP) was significantly higher in cases compared to controls (P = 0.023).

Dietary intakes of study participants

Table 2 provides a detailed summary of the dietary intake among study participants.

The results of our study showed that the mean calorie intake in the case and control groups was significantly different (2682.14 ± 949.85 Kcal/day for the case group and 2937.65 ± 918.02 Kcal/day for the control group; P = 0.047). In terms of macronutrients and micronutrients intake, protein intake among cases (88.48 ± 32.16 g/day) was slightly lower than that among controls (94.41 ± 32.80 g/day), although this distinction did not reach statistical significance (P = 0.188). Upon examination of daily selenium intake, it was discovered that the case group had a mean intake of 123.95 ± 54.95 mg/day, which was significantly lower than the control group’s intake of 140.90 ± 64.21 mg/day (P = 0.046).

Table 2 Dietary intakes of study participants

Energy-adjusted DTAC

Table 3 reveals the distinct dietary intake of control groups across tertiles of DTAC. It has been reported that participants in the tertile 3 of DTAC exhibited a significantly higher vitamin C intake (127.01 ± 5.35) compared to those in tertiles 1 and 2 (106.44 ± 5.48 and 113.55 ± 5.37, respectively) (P = 0.026). However, we couldn’t find any significant differences among the DTAC tertiles regarding other macro and micronutrients (P > 0.05).

Table 3 Characteristics of study participants according to tertiles of energy-adjusted dietary total antioxidant capacity a

Association between DTAC and stroke

Table 4 presents the results of the multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for assessing the association between DTAC and the risk of stroke, with the control group as the reference category. These analyses were carried out using different models with varying levels of adjustment. In the first model, which is conditioned on the matching factors of age, sex, and event time, the OR for stroke was 1.02 (95% CI: 0.92, 1.13), indicating that there was no statistically significant association between DTAC and the risk of stroke (p = 0.68). Also, we couldn’t find any significant correlation between DTAC and stroke in the fully adjusted model (OR = 1.06, 95% CI: 0.94, 1.20; P = 0.33).

Table 4 Multivariate-adjusted ORs and 95% CIs for stroke in relation to dietary total antioxidant capacity


This nested case-control study aimed to investigate the relationship between DTAC and the risk of stroke. The results of this study did not show a significant association between DTAC and stroke risk, even after adjusting for potential confounding factors such as age, sex, event time, energy intake, smoking, hypertension, and diabetes.

Numerous research studies have explored the role of dietary factors in the development of stroke. However, a limited amount of information is available regarding the connection between DTAC and stroke. In line with our findings, in a large population-based cohort study among Swedish women, it has been reported a non-significant correlation between DTAC and stroke risk [34]. In addition, based on the results of another cohort study among Italian adults, it has been shown that there wasn’t any significant correlation between DTAC and hazard ratio (HR) for all types of strokes. However, they found a significant inverse correlation between DTAC and the risk of ischemic stroke [33]. Contrary to our findings, the results of some other studies show the protective effect of DTAC against the risk of stroke. Milajerdi et al., in a case–control study, showed an inverse relationship between DTAC and the risk of stroke [22]. Similar findings were reported in another study [20, 45, 46].

The lack of a significant association between DTAC and stroke risk in this study may be due to several reasons. One of the primary reasons is the variation in individuals’ eating habits and lifestyles among different countries [47]. Furthermore, the employment of distinct methods for measuring DTAC, along with differences in the types of dietary questionnaires employed, are additional factors that contribute to this discrepancy and impact the precision of the findings. Another reason for the contradiction observed in the results of the studies is the difference in the patients’ age range and demographic characteristics. Contrary to our findings Yang et al., in their study and the subgroup analysis, revealed that individuals over 60 years old, women, drinkers, former smokers, and those with no physical activity exhibited a stronger correlation between lower DTAC and an elevated risk of stroke [20].

Our study boasts several strengths. Firstly, we utilized DTAC to comprehensively measure the overall antioxidant potential derived from dietary sources. In addition, we carefully adjusted for potential confounding factors, particularly considering the contentious nature of the association between DTAC and stroke, which incorporates lifestyle and health-related variables.

However, our study also had some limitations that should be noted. Firstly, DTAC is a complex measure that takes into account the antioxidant capacity of multiple nutrients and phytochemicals in the diet. It is possible that the individual contribution of each antioxidant nutrient to stroke risk reduction is small, and the combined effect of all antioxidants may not be significant. Secondly, the measurement of DTAC is subject to measurement error, as it relies on the accuracy of dietary assessment methods and the FRAP database. Furthermore, our study’s generalizability may be constrained by its geographical and demographic scope. Focused solely on a rural area in Iran, our findings may not be fully representative of broader populations with differing dietary habits, lifestyles, and stroke risk profiles. Additionally, the relatively modest sample size of our study may have limited statistical power, potentially hindering our ability to detect significant associations between DTAC and stroke risk. Additionally, as a nested case-control study, our research design inherently possesses certain limitations. While nested case-control studies offer advantages such as efficient data collection and reduced costs, they are susceptible to biases related to the selection of controls from within the cohort. The potential for selection bias or misclassification of exposure variables must be acknowledged, as these factors could influence the validity and interpretation of our results.

Moreover, the reliance on questionnaire-based data collection introduces inherent limitations related to recall bias and respondent accuracy. Despite efforts to mitigate these biases through rigorous questionnaire design and validation procedures, the possibility of inaccuracies in reported dietary intake and lifestyle factors cannot be entirely eliminated.


Our study suggests that the measured DTAC may not be a significant predictor of stroke risk in this particular population. Although we observed dietary patterns, and antioxidant intake differences between cases and controls and among DTAC tertiles, the multivariate-adjusted analysis did not reveal any significant association between DTAC and stroke risk. These findings underscore the complex interplay of factors that influence stroke risk and highlight the need for further research to comprehensively understand these relationships.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. Tiwari S, Joshi A, Rai N, Satpathy P. Impact of stroke on quality of life of stroke survivors and their caregivers: a qualitative study from India. J Neurosciences Rural Pract. 2021;12(04):680–8.

    Article  Google Scholar 

  2. Azarpazhooh MR, Etemadi MM, Donnan GA, Mokhber N, Majdi MR, Ghayour-Mobarhan M, et al. Excessive incidence of stroke in Iran: evidence from the Mashhad Stroke Incidence Study (MSIS), a population-based study of stroke in the Middle East. Stroke. 2010;41(1):e3–10.

    Article  PubMed  Google Scholar 

  3. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69.

    Article  PubMed  Google Scholar 

  4. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boehme AK, Esenwa C, Elkind MS. Stroke risk factors, genetics, and prevention. Circul Res. 2017;120(3):472–95.

    Article  CAS  Google Scholar 

  6. Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94.

    Article  Google Scholar 

  7. Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ. 2016;94(9):634.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820.

    Article  CAS  Google Scholar 

  9. Hankey GJ. Population impact of potentially modifiable risk factors for stroke. Stroke. 2020;51(3):719–28.

    Article  PubMed  Google Scholar 

  10. Vahdat M, Hosseini SA, Khalatbari Mohseni G, Heshmati J, Rahimlou M. Effects of resistant starch interventions on circulating inflammatory biomarkers: a systematic review and meta-analysis of randomized controlled trials. Nutr J. 2020;19:1–10.

    Article  Google Scholar 

  11. Morvaridzadeh M, Sadeghi E, Agah S, Fazelian S, Rahimlou M, Kern FG, et al. Effect of ginger (Zingiber officinale) supplementation on oxidative stress parameters: a systematic review and meta-analysis. J Food Biochem. 2021;45(2):e13612.

    Article  CAS  PubMed  Google Scholar 

  12. Morshedzadeh N, Rahimlou M, Asadzadeh Aghdaei H, Shahrokh S, Reza Zali M, Mirmiran P. Association between adipokines levels with inflammatory bowel disease (IBD): systematic reviews. Dig Dis Sci. 2017;62:3280–6.

    Article  CAS  PubMed  Google Scholar 

  13. De Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351.

  14. Rahimlu M, Shab-Bidar S, Djafarian K. Body mass index and all-cause mortality in chronic kidney disease: a dose–response meta-analysis of observational studies. J Ren Nutr. 2017;27(4):225–32.

    Article  PubMed  Google Scholar 

  15. Hashemi R, Rahimlou M, Baghdadian S, Manafi M. Investigating the effect of DASH diet on blood pressure of patients with type 2 diabetes and prehypertension: randomized clinical trial. Diabetes Metabolic Syndrome: Clin Res Reviews. 2019;13(1):1–4.

    Article  CAS  Google Scholar 

  16. Cherubini A, Ruggiero C, Morand C, Lattanzio F, Dell’Aquila G, Zuliani G, et al. Dietary antioxidants as potential pharmacological agents for ischemic stroke. Curr Med Chem. 2008;15(12):1236–48.

    Article  CAS  PubMed  Google Scholar 

  17. Hu F, Liu Y, Willett W. Preventing chronic diseases by promoting healthy diet and lifestyle: public policy implications for China. Obes Rev. 2011;12(7):552–9.

    Article  CAS  PubMed  Google Scholar 

  18. Grosso G, Marventano S, Yang J, Micek A, Pajak A, Scalfi L, et al. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit Rev Food Sci Nutr. 2017;57(15):3218–32.

    Article  PubMed  Google Scholar 

  19. Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168(7):713–20.

    Article  PubMed  Google Scholar 

  20. Yang C, Jia X, Wang Y, Fan J, Zhao C, Yang Y, et al. Association between Dietary Total Antioxidant Capacity of Antioxidant Vitamins and the risk of stroke among US adults. Antioxidants. 2022;11(11):2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rautiainen S, Larsson S, Virtamo J, Wolk A. Total antioxidant capacity of diet and risk of stroke: a population-based prospective cohort of women. Stroke. 2012;43(2):335–40.

    Article  CAS  PubMed  Google Scholar 

  22. Milajerdi A, Shakeri F, Keshteli AH, Mousavi SM, Benisi-Kohansal S, Saadatnia M, et al. Dietary total antioxidant capacity in relation to stroke among Iranian adults. Nutr Neurosci. 2020;23(6):465–70.

    Article  CAS  PubMed  Google Scholar 

  23. Chavda V, Chaurasia B, Garg K, Deora H, Umana GE, Palmisciano P, et al. Molecular mechanisms of oxidative stress in stroke and cancer. Brain Disorders. 2022;5:100029.

    Article  CAS  Google Scholar 

  24. Sinha N, Kumar Dabla P. Oxidative stress and antioxidants in hypertension–a current review. Curr Hypertens Reviews. 2015;11(2):132–42.

    Article  CAS  Google Scholar 

  25. Slemmer JE, Shacka JJ, Sweeney M, Weber JT. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem. 2008;15(4):404–14.

    Article  CAS  PubMed  Google Scholar 

  26. Khan AN, Khan RA, Ahmad M, Mushtaq N. Role of antioxidant in oxidative stress and diabetes mellitus. J Pharmacognosy Phytochemistry. 2015;3(6):217–20.

    Google Scholar 

  27. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461–70.

    Article  CAS  PubMed  Google Scholar 

  28. Qu J, Chen W, Hu R, Feng H. The injury and therapy of reactive oxygen species in intracerebral hemorrhage looking at mitochondria. Oxidative medicine and cellular longevity. 2016;2016.

  29. Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, et al. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci. 2020;13:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rahimlou M, Yari Z, Rayyani E, Keshavarz SA, Hosseini S, Morshedzadeh N, et al. Effects of ginger supplementation on anthropometric, glycemic and metabolic parameters in subjects with metabolic syndrome: a randomized, double-blind, placebo-controlled study. J Diabetes Metab Disord. 2019;18(1):119–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zujko ME, Waśkiewicz A, Witkowska AM, Cicha-Mikołajczyk A, Zujko K, Drygas W. Dietary total antioxidant Capacity—A New Indicator of Healthy Diet Quality in Cardiovascular diseases: a Polish cross-sectional study. Nutrients. 2022;14(15):3219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prior RL. Oxygen radical absorbance capacity (ORAC): new horizons in relating dietary antioxidants/bioactives and health benefits. J Funct Foods. 2015;18:797–810.

    Article  CAS  Google Scholar 

  33. Del Rio D, Agnoli C, Pellegrini N, Krogh V, Brighenti F, Mazzeo T, et al. Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. J Nutr. 2011;141(1):118–23.

    Article  PubMed  Google Scholar 

  34. Hantikainen E, Löf M, Grotta A, Lagerros YT, Serafini M, Bellocco R, et al. Dietary non-enzymatic antioxidant capacity and risk of stroke: the Swedish women’s Lifestyle and Health Cohort. Nutrition. 2020;73:110723.

    Article  PubMed  Google Scholar 

  35. Devore EE, Feskens E, Ikram MA, den Heijer T, Vernooij M, van der Lijn F, et al. Total antioxidant capacity of the diet and major neurologic outcomes in older adults. Neurology. 2013;80(10):904–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, et al. The effect of ketogenic diet on shared risk factors of cardiovascular disease and cancer. Nutrients. 2022;14(17):3499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farjam M, Bahrami H, Bahramali E, Jamshidi J, Askari A, Zakeri H, et al. A cohort study protocol to analyze the predisposing factors to common chronic non-communicable diseases in rural areas: Fasa Cohort Study. BMC Public Health. 2016;16(1):1–8.

    Article  Google Scholar 

  38. Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC. Dietary patterns and markers of systemic inflammation among Iranian women. J Nutr. 2007;137(4):992–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tabrizi R, Borhani-Haghighi A, Lankarani KB, Keshani P, Heydari ST, Keshavarz P, et al. Reliability and validity of simple stroke food frequency questionnaire (SS-FFQ) for Nutrition Monitoring in patients with Acute ischemic stroke. J Neurosci Rural Pract. 2021;12(1):51–9.

    Article  PubMed  Google Scholar 

  40. Eghtesad S, Hekmatdoost A, Faramarzi E, Homayounfar R, Sharafkhah M, Hakimi H et al. Validity and reproducibility of a food frequency questionnaire assessing food group intake in the PERSIAN Cohort Study. Front Nutr. 2023;10.

  41. Bagheri M, Nouri M, Homayounfar R, Akhlaghi M. Association between adherence to the Mediterranean diet with cardiometabolic risk factors: a cross-sectional study on PERSIAN cohort study in Fasa. Sci Rep. 2023;13(1):14870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nouri M, Shateri Z, Rezaei M, Zangene A, Homayounfar R, Keshani P. Healthy beverage index could decrease odds of metabolic syndrome: a cross-sectional study. Food Science & Nutrition; 2023.

  43. Haytowitz DB, Bhagwat S. USDA database for the oxygen radical absorbance capacity (ORAC) of selected foods, release 2. US Department Agric. 2010;3(1):10–48.

    Google Scholar 

  44. Moghaddam MB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S. The Iranian version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci J. 2012;18(8):1073–80.

    Google Scholar 

  45. Morvaridzadeh M, Nachvak SM, Agah S, Sepidarkish M, Dehghani F, Rahimlou M, et al. Effect of soy products and isoflavones on oxidative stress parameters: a systematic review and meta-analysis of randomized controlled trials. Food Res Int. 2020;137:109578.

    Article  CAS  PubMed  Google Scholar 

  46. Parsi A, Torkashvand M, Hajiani E, Rahimlou M, Sadeghi N. The effects of crocus sativus extract on serum lipid profile and liver enzymes in patients with non-alcoholic fatty liver disease: a randomized placebo-controlled study. Obes Med. 2020;17:100165.

    Article  Google Scholar 

  47. Jia P, Liu L, Xie X, Yuan C, Chen H, Guo B, et al. Changes in dietary patterns among youths in China during COVID-19 epidemic: the COVID-19 impact on lifestyle change survey (COINLICS). Appetite. 2021;158:105015.

    Article  PubMed  Google Scholar 

Download references


This study was supported by the Deputy of Research and Technology of Fasa University of Medical Sciences, Fasa, Iran, with grant number 401194. The authors would like to thank the clinical research development unit of Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran, for their support, cooperation, and assistance throughout study.


This research received no external funding.

Author information

Authors and Affiliations



For this research, authors contributed in the following dimensions: conceptualization, R.T, A.H., and M.R.; methodology, R.T and A.H; investigation, R.T., and M.R.; resources, M.R. and R.T; data curation, A.H., F.V. and M.R.; writing—original draft preparation, M.R., F.V. and R.T.; writing—review and editing, R.T.; supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Mehran Rahimlou or Reza Tabrizi.

Ethics declarations

Ethics approval and consent to participate

Our research protocol followed the guidelines set forth in the Helsinki Declaration, and it received approval from the Fasa University of Medical Sciences Research Council and Ethics Committee (approval code: IR.FUMS.REC.1401.241). Moreover, the participants in our study provided written informed consent to participate in the research.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibzadeh, A., Rahimlou, M., Ravankhah, M. et al. Association between dietary total antioxidant capacity and the risk of stroke: a nested case-control study. BMC Nutr 10, 56 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: