Poyrazoglu S, Bas F, Darendeliler F. Metabolic syndrome in young people. Curr Opin Endocrinol Diabetes Obes. 2015;21:56–63.
Article
Google Scholar
Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;10:15718–23.
Article
Google Scholar
Goodman AL, Gordon JI. Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab. 2010;12:111–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu HJ, Park SG, Jang HB, Choi MG, Park KH, Kang JH, et al. Obesity alters the microbial community profile in Korean adolescents. PLoS One. 2015;10:e0134333.
Article
PubMed
PubMed Central
Google Scholar
Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev. 2011;12:272–81.
Article
CAS
PubMed
Google Scholar
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominquez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2009;457:480–4.
Article
PubMed
Google Scholar
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural africa. Proc Natl Acad Sci U S A. 2010;104:14691–6.
Article
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koleva PT, Bridgman SL, Kozyrskyj AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients. 2015;7:2237–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232–41.
Article
CAS
PubMed
Google Scholar
Liszt K, Zwielehner J, Handschur M, Hippe B, Thaler R, Haslberger AG. Characterization of bacteria, clostridia and bacteroides in faeces of begetarinas using qPCR and OCR-DGGE fingerprinting. Ann Nutr Metab. 2009;54:253–7.
Article
CAS
PubMed
Google Scholar
Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;505:559–63.
Google Scholar
Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, et al. Determination of the in vivo previotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr. 2010;104:1353–6.
Article
CAS
PubMed
Google Scholar
Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, et al. Whole-grain wheat breakfast cereal has a previotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99:110–20.
Article
CAS
PubMed
Google Scholar
Vendrame S, Guglielmetti S, Riso P, Arioli S, Klimis-Zacas D, Porrini M. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem. 2011;59:12815–20.
Article
CAS
PubMed
Google Scholar
Fernando WM, Hill JE, Zello GA, Tyler RT, Dahl WJ, Van Kessel AG. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef Microbes. 2010;1:197–207.
Article
CAS
PubMed
Google Scholar
Han K, Bose S, Wang JH, Kim BS, Kim MJ, Kim EJ, et al. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota compostion and gene expression related to metabolic syndrome in oveses korean women. Mol Nutr Food Res. 2015;59:1004–8.
Article
CAS
PubMed
Google Scholar
Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2010;5:220–30.
Article
PubMed
PubMed Central
Google Scholar
Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types two and four habe differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 2010;5:e15046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93:1062–72.
Article
CAS
PubMed
Google Scholar
Lee A, Jang HB, Ra M, Choi Y, Lee HJ, Park JY, et al. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy’s metabolite profiling. Obes Res Clin Pract. 2015;9:336–45.
Article
CAS
PubMed
Google Scholar
Huber T, Faulkner G, Hugenholtz P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 2004;20:2317–9.
Article
CAS
PubMed
Google Scholar
Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the health “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:259.
Article
PubMed
PubMed Central
Google Scholar
Chiu CM, Huang WC, Weng SL, Tseng HC, Liang C, Wang WC, et al. Systematic analysis of the association between gut flora and obesity through high-throughput sequencing and bioinformatics approaches. Biomed Res Int. 2014;2014:906168.
PubMed
PubMed Central
Google Scholar
Gorsuch RI. Factor analysis. Philadelphia: Lawrence Erlbaum Associates; 1983.
Google Scholar
The Korean Nutrition Society. Recommended Dietary Allowances for Koreans. 7th revision. Seoul: Korean Nutrition Society; 2000 (in Korean).
Hu FB, Rimm EB, Smith-Warner SA, Feskanich D, Stampfer MJ, Ascherio A, et al. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr. 1999;69:246–9.
Google Scholar
Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslaina S, et al. The metabolic syndrome in children and adolescents. Lancet. 2007;369:2059–61.
Article
PubMed
Google Scholar
Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13:3–9.
Article
CAS
PubMed
Google Scholar
Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and quantity of dietary fat and carbohydrate later faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population. Int J Obes (Lond). 2013;37:216–23.
Article
CAS
Google Scholar
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.
Article
CAS
PubMed
Google Scholar
Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One. 2012;7:e47713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grzeskowiak K, Collado MC, Mangani C, Maleta K, Laitinen K, Ashorn P, et al. Distinct gut microbiota in southeastern African and northern european infants. J Pediatr Gastroenterol Nutr. 2012;54:812–6.
Article
PubMed
Google Scholar
Graf D, Di Cagno R, Fak F, Flint HJ, Nyman M, Saarela M, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis. 2015;26:26164.
PubMed
Google Scholar
Nam Y, Jung M, Roh SW, Kim M, Bae J. Comparative analysis of Koran human gut microbiota by barcoded pyrosequencing. PLoS One. 2011;6:e22109.
Article
CAS
PubMed
PubMed Central
Google Scholar
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for carbohydrate and dietary fibre. EFSA J. 2010;8:1462.
Article
Google Scholar
Lee Y, Lee HJ, Lee HS, Jang YA, Kim C. Analytical dietary fiber database for the National Health and Nutrition Survey in Korea. J Food Compos Anal. 2008;21:S35–42.
Slattery ML, Edwards SL, Boucher KM, Anderson K, Caan BJ. Lifestyle and colon cancer: an assessement of factors associated with risk. Am J Epidemiol. 1999;150:869–77.
Article
CAS
PubMed
Google Scholar
Esmaillzadeh A, Azadbakht L. Major dietary patterns in relation to general obesity and central adiposity among Iranian women. J Nutr. 2008;138:358–63.
CAS
PubMed
Google Scholar
Schulze MB, Fung TT, Manson JE, Willett WC, Hu FB. Dietary patterns and changes in body weight in women. Obesity (Silver Spring). 2006;14:1444–53.
Article
Google Scholar
Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364:2392–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu FB, Rimm EB, Stampfer MJ, Ascherio A, Spiegelman D, Willett WC. Prospective study of major dietary patterns and risk of cornoay heart diseas in men. Am J Clin Nutr. 2002;72:912–21.
Google Scholar
Heidemann C, Schulze MB, Franco OH, van Dam RM, Mantzoros CS, Hu FB. Dietary patterns and risk of mortality from cardioascular diseas, cancer, and allcauses in a prospective cohort of women. Circulation. 2008;118:230–7.
Article
PubMed
PubMed Central
Google Scholar
Van Dam RM, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann Intern Med. 2002;136:201–9.
Article
PubMed
Google Scholar
Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietar patterns, meat intake, and the risk of type 2 dieabetes in women. Arch Intern Med. 2004;164:2235–40.
Article
PubMed
Google Scholar
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claassen S, du Toit E, Kaba M, Moodley C, Zar HJ, Nicol MP. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods. 2013;94:103–10.
Article
CAS
PubMed
Google Scholar
Ferrand J, Patron K, Legrand-Frossi C, Frippiat JP, Merlin C, Alauzet C, et al. Comparison of seven methods for extraction of bacterial DNA from fecal and cecal samples of mice. J Microbiol Methods. 2014;105:180–5.
Article
CAS
PubMed
Google Scholar