Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
Article
CAS
Google Scholar
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.
Article
CAS
Google Scholar
Farnoosh G, Alishiri G, Zijoud SH, Dorostkar R, Farahani AJ. Understanding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19) based on available evidence-a narrative review. J Milit Med. 2020;22(1):1–11.
Google Scholar
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.
Article
CAS
Google Scholar
Kordzadeh-Kermani E, Khalili H, Karimzadeh I. Pathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19). Future Microbiol. 2020;15(13):1287–305.
Article
CAS
Google Scholar
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–8.
Article
CAS
Google Scholar
Ali MJ, Hanif M, Haider MA, Ahmed MU, Sundas F, Hirani A, et al. Treatment options for COVID-19: a review. Front Med (Lausanne). 2020;7:480.
Article
Google Scholar
Ciotti M, Ciccozzi M, Terrinoni A, Jiang W-C, Wang C-B, Bernardini S. The COVID-19 pandemic. Crit Rev Clin Lab Sci. 2020;57(6):365–88.
Article
CAS
Google Scholar
Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection: Elsevier; 2020. p. 1631–8.
Google Scholar
Miller R, Englund K. Clinical presentation and course of COVID-19. Cleve Clin J Med. 2020;87(7):384–8.
Article
Google Scholar
Wischmeyer PE. Nutrition therapy in sepsis. Crit Care Clin. 2018;34(1):107–25.
Article
Google Scholar
Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Int Med. 2020;180(7):934–43.
Article
CAS
Google Scholar
Bedock D, Lassen PB, Mathian A, Moreau P, Couffignal J, Ciangura C, et al. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clin Nutr ESPEN. 2020;40:214–9.
Article
Google Scholar
Abate SM, Chekole YA, Estifanos MB, Abate KH, Kabthymer RH. Prevalence and outcomes of malnutrition among hospitalized COVID-19 patients: a systematic review and meta-analysis. Clin Nutr ESPEN. 2021;43:174–83.
Article
Google Scholar
Ehwerhemuepha L, Bendig D, Steele C, Rakovski C, Feaster W. The effect of malnutrition on the risk of unplanned 7-day readmission in pediatrics. Hosp Pediatr. 2018;8(4):207–13.
Article
Google Scholar
Correia MIT, Waitzberg DL. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr. 2003;22(3):235–9.
Article
Google Scholar
Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, et al. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009;35(10):1728–37.
Article
Google Scholar
Anthony PS. Nutrition screening tools for hospitalized patients. Nutr Clin Pract. 2008;23(4):373–82.
Article
Google Scholar
Detsky A, McLaughlin J, Baker J, Johnston N, Whittaker S, Mendelson R, et al. What is subjective global assessment of nutritional status? 1987. Classical article. Nutr Hosp. 2008;23(4):400–7.
CAS
Google Scholar
Kondrup J, Rasmussen HH, Hamberg O, Stanga Z, Group AahEW. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr. 2003;22(3):321–36.
Article
Google Scholar
Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15(6):1–11.
Article
Google Scholar
Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.
Article
CAS
Google Scholar
Moreno R, Vincent J-L, Matos R, Mendonca A, Cantraine F, Thijs L, et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Intensive Care Med. 1999;25(7):686–96.
Article
CAS
Google Scholar
Rahman A, Hasan RM, Agarwala R, Martin C, Day AG, Heyland DK. Identifying critically-ill patients who will benefit most from nutritional therapy: further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin Nutr. 2016;35(1):158–62.
Article
Google Scholar
Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin definition. Jama. 2012;307(23):2526–33.
Google Scholar
Edington J, Boorman J, Durrant ER, Perkins A, Giffin CV, James R, et al. Prevalence of malnutrition on admission to four hospitals in England. The malnutrition prevalence group. Clin Nutr (Edinburgh, Scotland). 2000;19(3):191–5.
Article
CAS
Google Scholar
White JV, Guenter P, Jensen G, Malone A, Schofield M. Consensus statement: academy of nutrition and dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012;36(3):275–83.
Article
Google Scholar
Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: an overview. Nutrition (Burbank, Los Angeles County, Calif). 2021;81:111016.
Article
CAS
Google Scholar
Holdoway A. Nutritional management of patients during and after COVID-19 illness. Br J Commun Nurs. 2020;25(Sup8):S6–s10.
Article
Google Scholar
Vong T, Yanek LR, Wang L, Yu H, Fan C, Zhou E, et al. Malnutrition increases hospital length of stay and mortality among adult inpatients with COVID-19. Nutrients. 2022;14(6):1310.
Article
CAS
Google Scholar
Lew CCH, Yandell R, Fraser RJL, Chua AP, Chong MFF, Miller M. Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review [formula: see text]. JPEN J Parenter Enteral Nutr. 2017;41(5):744–58.
Article
Google Scholar
Kondrup J, Rasmussen HH, Hamberg O, Stanga Z. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr (Edinburgh, Scotland). 2003;22(3):321–36.
Article
Google Scholar
Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care (London, England). 2011;15(6):R268.
Article
Google Scholar
Canales C, Elsayes A, Yeh DD, Belcher D, Nakayama A, McCarthy CM, et al. Nutrition risk in critically ill versus the nutritional risk screening 2002: are they comparable for assessing risk of malnutrition in critically ill patients? JPEN J Parenter Enteral Nutr. 2019;43(1):81–7.
Article
CAS
Google Scholar
Zhang P, He Z, Yu G, Peng D, Feng Y, Ling J, et al. The modified NUTRIC score can be used for nutritional risk assessment as well as prognosis prediction in critically ill COVID-19 patients. Clin Nutr (Edinburgh, Scotland). 2021;40(2):534–41.
Article
CAS
Google Scholar
Ata Ur-Rehman HM, Ishtiaq W, Yousaf M, Bano S, Mujahid AM, Akhtar A. Modified nutrition risk in critically ill (mNUTRIC) score to assess nutritional risk in mechanically ventilated patients: a prospective observational study from the Pakistani population. Cureus. 2018;10(12):e3786.
Google Scholar
de Vries MC, Koekkoek WK, Opdam MH, van Blokland D, van Zanten AR. Nutritional assessment of critically ill patients: validation of the modified NUTRIC score. Eur J Clin Nutr. 2018;72(3):428–35.
Article
Google Scholar
Kalaiselvan MS, Renuka MK, Arunkumar AS. Use of nutrition risk in critically ill (NUTRIC) score to assess nutritional risk in mechanically ventilated patients: a prospective observational study. Indian J Crit Care Med. 2017;21(5):253–6.
Article
CAS
Google Scholar
Kang S-J, Jung SI. Age-related morbidity and mortality among patients with COVID-19. Infect Chemother. 2020;52(2):154.
Article
CAS
Google Scholar
Leung C. Risk factors for predicting mortality in elderly patients with COVID-19: a review of clinical data in China. Mech Ageing Dev. 2020;188:111255.
Article
CAS
Google Scholar
Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020;23(5):1416–24.
Article
Google Scholar
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.
Article
CAS
Google Scholar
Zeng F, Huang Y, Guo Y, Yin M, Chen X, Xiao L, et al. Association of inflammatory markers with the severity of COVID-19: a meta-analysis. Int J Infect Dis. 2020;96:467–74.
Article
CAS
Google Scholar
Chilimuri S, Sun H, Alemam A, Mantri N, Shehi E, Tejada J, et al. Predictors of mortality in adults admitted with COVID-19: retrospective cohort Study from new York City. West J Emerg Med. 2020;21(4):779–84.
Article
Google Scholar
Milenkovic M, Hadzibegovic A, Kovac M, Jovanovic B, Stanisavljevic J, Djikic M, et al. D-dimer, CRP, PCT, and IL-6 levels at admission to ICU can predict in-hospital mortality in patients with COVID-19 pneumonia. Oxidative Med Cell Longev. 2022;2022.
Smilowitz NR, Kunichoff D, Garshick M, Shah B, Pillinger M, Hochman JS, et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021;42(23):2270–9.
Article
CAS
Google Scholar
Ullah W, Thalambedu N, Haq S, Saeed R, Khanal S, Tariq S, et al. Predictability of CRP and D-dimer levels for in-hospital outcomes and mortality of COVID-19. J Commun Hosp Intern Med Perspect. 2020;10(5):402–8.
Article
Google Scholar
Bivona G, Agnello L, Ciaccio M. Biomarkers for prognosis and treatment response in COVID-19 patients. Ann Lab Med. 2021;41(6):540–8.
Article
CAS
Google Scholar
Ming DK, Myall AC, Hernandez B, Weiße AY, Peach RL, Barahona M, et al. Informing antimicrobial management in the context of COVID-19: understanding the longitudinal dynamics of C-reactive protein and procalcitonin. BMC Infect Dis. 2021;21(1):1–7.
Google Scholar
Kellum JA, Song M, Li J. Science review: extracellular acidosis and the immune response: clinical and physiologic implications. Crit Care (London, England). 2004;8(5):331–6.
Article
Google Scholar
Shevel E. Conditions favoring increased COVID-19 morbidity and mortality: their common denominator and its early treatment. Mo Med. 2021;118(2):113–5.
Google Scholar
Bodolea C, Nemes A, Avram L, Craciun R, Coman M, Ene-Cocis M, et al. Nutritional risk assessment scores effectively predict mortality in critically ill patients with severe COVID-19. Nutrients. 2022;14(10):2105.
Article
CAS
Google Scholar
Frias-Toral E, Garcia E, Morocho C, Peralta F, Ramirez Y, Fuentes D. Association of the nutric score with 30 and 60-day mortality in sars Covid 19 critically ill patients in an intensive care unit, in Guayaquil - Ecuador. Clin Nutr ESPEN. 2020;40:622. https://doi.org/10.1016/j.clnesp.2020.09.648 Epub 2020 Nov 9.
Article
Google Scholar
Kumar N, Kumar A, Kumar A, Pattanayak A, Singh K, Singh PK. NUTRIC score as a predictor of outcome in COVID-19 ARDS patients: a retrospective observational study. Indian J Anaesth. 2021;65(9):669–75.
Article
CAS
Google Scholar
Osuna-Padilla IA, Moguel NCR, Vargas AA, Llamazares SR. High nutritional risk using NUTRIC-score is associated with worse outcomes in COVID-19 critically ill patients. Nutr Hosp. 2021;38(3):540–4.
CAS
Google Scholar
Fatyga P, Pac A, Fedyk-Łukasik M, Grodzicki T, Skalska A. The relationship between malnutrition risk and inflammatory biomarkers in outpatient geriatric population. Eur Geriatr Med. 2020;11(3):383–91.
Article
Google Scholar
Gioulbasanis I, Patrikidou A, Kitikidou K, Papadimitriou K, Vlachostergios PJ, Tsatsanis C, et al. Baseline plasma levels of interleukin-8 in stage IV non-small-cell lung cancer patients: relationship with nutritional status and prognosis. Nutr Cancer. 2012;64(1):41–7.
Article
CAS
Google Scholar
Hickson M. Malnutrition and ageing. Postgrad Med J. 2006;82(963):2–8.
Article
CAS
Google Scholar
Honda H, Qureshi AR, Heimbürger O, Barany P, Wang K, Pecoits-Filho R, et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47(1):139–48.
Article
CAS
Google Scholar
Mahieux F, Couderc R, Fénelon G, Maachi M. Relationships between weight loss and circulating cytokines in patients with Alzheimer’s disease. Psychologie & neuropsychiatrie du vieillissement. 2006;4(4):281–6.
Google Scholar
Chowdhury MSI, Rahman AZ, Haque M, Nahar N, Taher A. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in different grades of protein energy malnutrition. J Bangladesh Soc Physiol. 2007;2:17–9.
Article
Google Scholar
Karajiban M, Montazerifar F, Hosseini R, Suni F, Dashipour AR, Fadaaeimokhtarkanlo M. The relationship between malnutrition and liver enzymes inHospitalized children in Zahedan: a case-control study. Zahedan. J Res Med Sci. 2021;23(1).
Karmacharya K, Islam M. Role of serum alanine aminotransferase aspartate aminotransferase and alkaline phosphatase in early detection of protein energy malnutrition. J Nepal Paediatr Soc. 2007;27(2):68–72.
Article
Google Scholar
Skevaki C, Fragkou PC, Cheng C, Xie M, Renz H. Laboratory characteristics of patients infected with the novel SARS-CoV-2 virus. J Infect. 2020;81(2):205–12.
Article
CAS
Google Scholar
Wei W, Wu X, Jin C, Mu T, Gu G, Min M, et al. Predictive significance of the prognostic nutritional index (PNI) in patients with severe COVID-19. J Immunol Res. 2021;2021:9917302.
Article
Google Scholar
Eckart A, Struja T, Kutz A, Baumgartner A, Baumgartner T, Zurfluh S, et al. Relationship of nutritional status, inflammation, and serum albumin levels during acute illness: a prospective study. Am J Med. 2020;133(6):713–22 e7.
Article
CAS
Google Scholar
Leoni MLG, Moschini E, Beretta M, Zanello M, Nolli M. The modified NUTRIC score (mNUTRIC) is associated with increased 28-day mortality in critically ill COVID-19 patients: internal validation of a prediction model. Clin Nutr ESPEN. 2022;48:202–9.
Article
Google Scholar
Akgül F, Sevim B, Arslan Y, Şencan M, Atabey P, Aktaş A. Predictors of severity and mortality in COVID-19: a retrospective study from batman. Turkey Infect Dis Clin Microbiol. 2022;4(1):18–30.
Article
Google Scholar
Alharthy A, Aletreby W, Faqihi F, Balhamar A, Alaklobi F, Alanezi K, et al. Clinical characteristics and predictors of 28-Day mortality in 352 critically ill patients with COVID-19: a retrospective study. J Epidemiol Glob Health. 2021;11(1):98–104.
Article
Google Scholar
Ziuzia-Januszewska L, Januszewski M, Sosnowska-Nowak J, Janiszewski M, Dobrzyński P, Jakimiuk AA, et al. COVID-19 severity and mortality in two pandemic waves in Poland and predictors of poor outcomes of SARS-CoV-2 infection in hospitalized young adults. Viruses. 2022;14(8):1700.
Article
CAS
Google Scholar