Skip to main content

The association between glycemic index and glycemic load and quality of life among overweight and obese women: a cross-sectional study



The association between different dietary approaches and quality of life (QoL) has been well-demonstrated in previous research. However, the relationship between glycemic index (GI) and glycemic load (GL) with different dimensions of QoL has not been established. Therefore, we aimed to investigate the relationship between GI and GL with QoL in overweight and obese women.


Two hundred seventy-six overweight and obese women (body mass index (BMI) ≥ 30 kg/m2), aged 18–64 years old, were included in this cross-sectional study. The amount of dietary intake and GI and GL indexes were established using a valid and reliable Food Frequency Questionnaire (FFQ) containing 147 items. Body composition (using bioimpedance analysis), anthropometrics, and physical activity were assessed. Insulin resistance (HOMA-IR) and hs-CRP were also measured, whilst QoL was measured using the SF-36 (short-form-36), self-administered, questionnaire.


Analyses were performed using multivariable linear regression, considering a wide range of confounding variables, such as age, physical activity, BMI, education, job, smoking, and marriage. We found a significant negative association between glycemic load and quality of life (β = -0.07, 95%CI = -0.13_ -0.01, p = 0.01). No significant associations were observed between glycemic index and quality of life (β = -0.03, 95%CI = -0.81_ 0.75, p = 0.93).


We observed a significant negative association between QoL and GL, but not GI, among overweight and obese women in Iran. Our results need to be confirmed with further well-designed and adequately powered studies that control for clinical confounders.

Peer Review reports


Over the past decade, the evaluation of quality of life)QoL( has become an essential clinical and research outcome measurement [1]. QoL is often used as a comprehensive concept, and when used in health care, it refers primarily to the physical components and occasionally extends to psychological components [2]. The World Health Organization (WHO) defines quality of life as an individual's perception of his or her position in life, within the culture and value system in which he or she lives, and his or her goals, expectations, patterns, and concerns [3]. QoL includes [1] physical aspects, such as pain, fatigue, energy, sleep and rest, [2] psychological aspects, such as self-esteem, memory, positive and negative emotions, and perception of body image and appearance, [3] Social aspects that focus primarily on personal relationships; and [4] Environmental aspects such as security, finance, leisure and information [3]. Diet is one of several environmental factors which can directly affect a person's QoL [4,5,6,7,8], and one of the most important components in the prediction of health outcomes is glycemic index and glycemic load of a diet [9].

Foods containing carbohydrate have a wide range of effects on Glycemic response (GR) [10]. The glycemic index (GI) estimates the rate at which carbohydrates are broken down during digestion and the rate at which they are absorbed into the bloodstream [11]. Several factors determine the GI of a food, including the type of carbohydrate, protein content, fat, pH, amount and type of fiber, and finally the particle size of the food [12]. Carbohydrate-rich foods that break down quickly and absorbed into the bloodstream are classified as high-GI foods, which leads to a rapid rise in blood glucose and an insulin response. Conversely, foods with a low GI have a slower and lower effect on postprandial blood glucose and insulin response level, respectively [13]. Given that the glycemic index does not provide information on how increased and prolonged of glycemia when consuming a certain amount of a carbohydrate-rich food, a separate measure called the glycemic load (GL) does both, therein providing a more accurate picture of a food’s real-life impact on postprandial glycemia [13]. The term GL combines the GI of a food or diet with the amount of carbohydrates in a given amount of a food, meal, or diet [14].

Various studies have examined the association of different types of diets, e.g. Mediterranean diet (Med Diet) [5], low carbohydrate diet (LCD) [6], therapeutic lifestyle changes diet [7], pulse-based diet [7], and fasting mimicking diet [8], with quality of life in different populations, indicating a positive association between adherence to these diets and several dimensions of QoL. In a previous cross-sectional study the association between adherence to a traditional Med Diet and health-related QoL (HRQoL) was investigated in older Spanish women and men with overweight or obesity harboring the metabolic syndrome. Participants aged 55–70 years and 6430 women and men were included in the study. HRQoL was assesed with 36-item questionnaire and adherence to Med Diet was assessed with 17-item questionnaire. Higher adherence to the Med Diet had a positive relation with several dimensions of HRQoL [5]. A prospective, randomized trial study on 61 obese adults with Type 2 diabetes (body mass index (BMI): 32.7 ± 5.4 kg/m2) was designed to compare the effects of a 2-year intervention with a LCD or low-fat diet (LFD) on HRQoL. LFD included 55–60 energy percent (E%) and LCD included 20 E% from carbohydrates. The Short Form-36 (SF-36) questionnaire was used to measure HRQoL in this clinical practice. After one year of treatment with LCD, improvements in HRQoL occurred [15]. Although various studies with different results have been published on the different types of diets and QoL [4,5,6,7], to date, no study has investigated the association between GI and GL with QoL. Therefore, for the first time in Iran, we examined the associations between GI and GL with QoL in overweight and obese women.


Study population

This cross-sectional study was conducted on 276 obese and overweight adult women, recruited from health care centers of Tehran city, Iran, between 2017–2019. Multi-stage simple random sampling was used. From all health centers of the Tehran University of medical sciences (TUMS), 20 health centers randomly were selected. Sampling was such that if women who were referred to Tehran health centers, met the inclusion criteria, were selected randomly to enter the study. Finally 276 women were recruited. The inclusion criteria were: being 18 to 64 years of age and having a BMI ≥ 30 kg/m2. The exclusion criteria were: cardiovascular disease, diabetes type 1 and 2, kidney disease, thyroid disease, malignancies, menopause, pregnancy, lactation, smoking, any acute or chronic diseases, consuming weight loss supplements, following a weight-loss diet over the past year, receiving lipid, glucose and blood pressure lowering drugs. Each participant was informed completely regarding the study protocol, the objectives of the study were explained to them, and finally written consent was obtained from all participants. Privacy and confidentiality were maintained. This study was conducted according to the ethical standards of the Human Research Ethics Committee of the Tehran University of Medical Sciences (IR.TUMS.MEDICINE.REC.1399.636), and in concordance with the Declaration of Helsinki (Fig. 1).

Fig. 1
figure 1

The flow chart of study design

Biochemical assessments

Twelve cc fasting venous blood samples were drawn from participants, following a 10–12 h fast, between 8: 00 and 10: 00 a.m. The blood samples were immediately centrifuged, aliquoted, and stored at –80 °C, and were analyzed by using a single assay technique. Measuring serum fasting blood glucose (FBS) with a colorimetric method was used from glucose oxidase–phenol 4-aminoantipyrine peroxidase (GOD-PAP). Triglyceride (TG) and Total cholesterol (TC) were measured by glycerol-3-phosphate oxidase–phenol 4-aminoantipyrine peroxidase (GPOPAP), enzymatic endpoint, and Low-density-lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol measured by direct enzymatic clearance assay. Serum high-sensitive C-reactive protein (hs-CRP) was evaluated with the use of the immunoturbidimetric assay. IR was estimated by homeostasis model assessment (HOMA), which was calculated according to the following equation: HOMA = [Fasting Plasma Glucose (mmol/L) × Fasting Plasma Insulin (mIU/L)]/22.5 [16]. All detections were performed using Randox Laboratories kit (Hitachi 902).

Body composition analysis

The body composition was assessed with a bioelectrical impedance analyzer (BIA) InBody 770 scanner (Inbody Co., Seoul, Korea) between 8–9 am after 12 h of overnight fasting that strictly following the procedure, techniques and precaution of the manufacturer’s protocol [17]. Based on the manufacturer’s instructions, all of participants were asked to remove extra clothes, including coat, sweater, shoes, and remove metal utensils/jewelry, such as rings, watches, and clothes. The examination takes nearly 20 s, and the BIA calculates waist circumference (WC), skeletal muscle mass (SMM), waist to hip ratio (WHR), fat free mass (FFM), and fat mass (FM).

Anthropometric measures

Height was measured by a Seca scale in standing position beside the wall, while barefoot and shoulders touching the wall, to the nearest 0.5 cm [18]. Hip circumference (HC) was measured to the nearest 0.5 cm, using a non-stretch tape measure. The weight and BMI were measured by BIA.

Physical activity assessment

Physical activity (PA) was appraised using the short-form of the International Physical Activity Questionnaire (IPAQ). This questionnaire calculates the PA of all participants during the past 7 days. The validity and reliability of IPAQ questionnaires has been confirmed across 12 countries. The criterion reliability of this questionnaires had a Spearman’s ρ of around 0.8. The median ρ for the validity has been reported around 0.30, which was similar to other validation studies. IPAQ is a validated self-reported seven-item measure of physical activity that indicates PA (vigorous, moderate, walking, and inactive) over the last week, and then, according to guidelines, the values were multiplied by their metabolic equivalent (MET) quantities and the acquired numbers were summed together to calculate MET/min/week values [19].

Dietary intake assessment

A 147-item semi-quantitative Food Frequency Questionnaire (FFQ) was employed by a trained dietitian to assess the usual dietary intake of the participants. The validity and reliability of the FFQ have been previously reported [20]. Participants reported their frequency of consumption of a given serving of each food item during the previous year on a daily, weekly, monthly, or yearly basis. Portion sizes of the consumed foods were converted to grams and milliliters using household measurements [21] and then individuals’ dietary intake data were analyzed using the Nutritionist IV software.

Glycemic index and glycemic load calculation

Subjects in the present study were tested during 3–5 separated occasions in the morning, after they had fasted overnight. On 2 occasions, the subjects ate test meals comprising one of the test foods—the portion size of each test food contained 50 g available carbohydrate. The test meal, on the other occasions, included the reference food, which could be 50 g glucose, 55 g dextrose, or 50 g available carbohydrate from white bread. After a fasting blood sample was drawn on every occasion, the subjects consumed the test meal. Further blood samples were taken at 15, 30, 45, 60, 90, and 120 min after they began to eat. After each food test for each participant based on the reference food in the same subject, the area under the GR curve (AUC) was demonstrated as a percentage of the mean AUC. To calculate the GI of food for all participants the mean of these values was used. To convert white bread as a reference food to a glucose scale, we multiplied the GI values by 0.71 (i.e. the GI of glucose = 100) [22]. Using the following formula, the total dietary GI was calculated: ∑ (GIa X available carbohydratea)/total available carbohydrate.

To calculate available carbohydrates, fiber was reduced from total carbohydrates, which were derived from the USDA Department of Foodstuffs Chart [23]. To calculate the dietary GL we used the following formula: (total glycemic index * total carbohydrate available) / 100 (Fig. 2).

Fig. 2
figure 2

Glycemic Index and glycemic load calculation

Quality of life assessment

The SF-36 is a short-form, self-administered, quality of life scoring questionnaire that consists of 36 questions, 35 of which are compressed into eight multi-item scales including: physical functioning (PF), role-physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role emotional (RE), and mental health (MH). (1) PF is a 10-question scale that captures abilities to deal with the physical requirement of life, such as attending to personal needs, walking, and flexibility. (2) RP is a four-item scale that evaluates the extent to which physical capabilities limit activity. (3) BP is a two-item scale that evaluates the perceived amount of pain experienced during the most recent 4 weeks and the extent to which that pain interfered with normal work activities. (4) GH is a five-item scale that evaluates general health in terms of personal perception. (5) VT is a four-item scale that evaluates feeling of pep, energy, and fatigue. (6) SF is a two-item scale that evaluates the extent and amount of time, if any, that physical health or emotional problems interfered with family, friends, and other social interactions during the most recent 4 weeks. (7) RE is a three-item scale that evaluates the extent, if any, to which emotional factors interfere with work or other activities. (8) MH is a five-item scale that evaluates feelings principally of anxiety and depression [24, 25]. The SF also includes a question self-evaluating health changes in the past year (reported health), which does not belong to the eight dimensions, or the total SF-36 score. Each of these 8 dimensions has a score between 0 (worst health) to 100 (best health) [26,27,28].

Statistical analysis

Statistical analyses were done using SPSS software (version 23, SPSS Inc., Chicago, IL, USA) and statistically significant was defined as p < 0.05. Normality of the data was checked by the Kolmogorov–Smirnov test. The distribution of categorical factors (educational status, supplement use, income, job, and marriage) across tertiles of GI and GL were performed using the Chi-square test. The comparison of the continuous variables and QoL items across across tertiles of GI and GL were investigated using analysis of variance (ANOVA) test. The analysis of covariance (ANCOVA) was applied for estimating energy-adjusted women’s dietary intakes across tertiles of GI and GL. Linear regression test was performed for assessing the associations of GI and GL with QoL among obese and overweight female subjects in three different models: crude model; model 1, adjusted for age, PA and BMI; model 2, adjusted for model 1 plus education status, job, smoking, and marri.


In total, 276 women were included in the statistical analysis. The means and standard deviation (SD) of the GL and GI in this study were 211.91 ± 76.16 and 56.71 ± 6.15, respectively. The mean (SD) of age, weight, and BMI of individuals were 36.82 ± 9.23 years, 79.74 ± 10.59 kg and 30.73 ± 3.65 kg/m2, respectively. The mean (SD) quality of life (SF-36 –total) score of the participants was 60.97 ± 29.42.

In this cross-sectional study, socio-economic status, such as marriage, occupation, and education were also examined. The results displayed that 161 (58.3%) participants were housekeepers and 216 (78.3%) participants were married. The majority of participants were educated to diploma (130 (47.1%)) and bachelor or higher (130 (47.1%)) level. Sixteen (5.8%) participants were smokers.

General characteristics of participants across two groups of GI and GL

A total of 276 Iranian women were categorized based on GL and GI. Participants’ characteristics in relation to different categories of GL and GI are presented in Table 1. Also, the results displayed a significant difference across GI for total cholesterol (p = 0.007). No significant differences across the GL and GI with other variables were seen (Table 1).

Table 1 General characteristics of participants across two groups of GI and GL

Difference in means of quality-of-life items across two groups of GI and GL

We found decreasing trends for three dimensions of SF-36, including SF-36 –total (p = 0.02), RE (p = 0.03), and GH (p = 0.05) across GL categories, and for role emotional (p = 0.03) across GI. But we observed that women in T3 of GL and GI had a significantly higher score of MH compared to T1. Moreover, a significant difference for VT (p = 0.03) across GL categories was seen (Table 2).

Table 2 Quality of life items across two groups of GI and GL

Comparison of daily nutrients intake in participants across GI and GL

Selected nutrients and food group intakes of participants across tertiles of GI and GL are presented in Table3. Participants assigned in the highest category of GI were characterized by lower intake of vitamin B12 (P = 0.03), vitamin D (P = 0.02), and biotin (P = 0.02). However, they showed higher intake of vitamin B3 (P = 0.04), vitamin B6 (P = 0.003), folate (P = 0.01), protein (P < 0.001), fruits (P = 0.02), and tea and coffee (P = 0.01). Also, there was a marginally significant difference for intake of fish (p = 0.06) and low-fat dairy (p = 0.07).

Table 3 Energy-adjusted dietary intakes across two groups of GL and GI

The results showed that intake of vitamin E (P = 0.002), vitamin B1(P = 0.03), vitamin B9 (P < 0.001), vitamin B12 (P = 0.01), vitamin C (P = 0.01), carbohydrate (P < 0.001), protein (P = 0.02), fat (P < 0.001), fiber (P = 0.002), refined grain (P = 0.01), fruits (P = 0.004), eggs (P = 0.04), and tea and coffee (P = 0.05) increased significantly across tertiles of GL (Table 3).

Association of the GL and GI with quality of life

A significant negative association between the GL and quality of life (β = -0.08, 95%CI = -0.14 -0.03, p = 0.002) was seen in the crude model. Moreover, this significant negative association was maintained after adjusting for confounding factors, such as age, PA, BMI, education, job, smoking, and marriage (β = -0.07, 95%CI = -0.13 -0.01, p = 0.01). However, no significant association of the GI with QoL was seen in the crude or adjusted models (β = -0.03, 95%CI = -0.81- 0.75, p = 0.93) (Table 4).

Table 4 Association of GI and GL with quality-of-life among obese and overweight female subjects


In this article, we examined the association between GI/GL of carbohydrate and QoL in overweight and obese women. In summary, we found that higher GI diet was positively associated with total cholesterol. We found that higher GI diet can lower RE and QoL total score across GL categories. Moreover, we found a marginal decreasing trend for GH across GL category. In our study, women in T3 of GL and GI had a significantly higher score of MH compared to T1, in addition, a significant difference was found for vitality across GL categories. Participants assigned in the highest category of GI showed lower intake of vitamin B12, vitamin D, and biotin, and higher intake of vitamin B3, vitamin B6, folate, protein, fruits, and tea and coffee. Additionally, a borderline significant difference for intake of fish and low-fat dairy was observed. The results indicated that intake of vitamin E, vitamin B1, vitamin B9, vitamin B12, vitamin C, carbohydrate, protein, fat, fiber, refined grain, fruits, eggs, and tea and coffee increased significantly across tertiles of GL, and we did not find any significant association about GI and GL with other components of QoL. Nutrition, holistically, may be associated with various aspects of QoL, however, as carbohydrate is, typically, the main component of calories consumed, we examined how GI and GL of carbohydrate can affect QoL [29, 30]. After examining for general characteristics of participants across two groups of GI and GL, we found that higher GI diet can induce increased total cholesterol. While some studies support the hypothesis that a high-GI diet unfavorably increases the risk dyslipidemia and cardio metabolic disorders [7, 8], some other studies observed the opposite association [9, 10]. Indeed, this association can be explained by elevated level of insulin concentration just after high GI (HGI) meal consumption and hypoglycemia which appears after 4–6 h. Elevated insulin, glucose, and free fatty acid level, after HGI meal consumption, can induce IR which can, in turn, cause dyslipidemia [11]. Our results showed that RE decreased across GI categories, in addition to RE, GH and QoL total score decreased across GL categories. This result was in line with previous studies in women with poly-cystic ovary syndrome, women's hormonal changes in emotional situation such as excessive happiness or sadness, impact their eating habits, they tend to eat more comfortable and energy dense food that are rich in sugar with higher GI and GL to lower their RE [31,32,33].We found GH, another component of QoL, was marginally associated with increasing trend of GL categories. GH is rated based on one's self-perception of his or her health status and depends on many factors, such as having mental and physical disorders and chronic disease [34]. As reported in previous studies, lower GL diet may lead to important reductions in blood pressure [35]. Additionally, low-GI and -GL diets tend to consist of low total calories, and this may promote energy intake regulation, which often leads to weight loss, and has been identified as a strong predictor of lower blood pressure [35]. We found that women in T3 of GL and GI had a significantly higher score of MH compared to T1. Although some studies reported protective effects of low GI diet in relation to MH, some other studies support our results where higher GL and GI diets were associated with lower prevalence mental disorders, depression, and psychological distress [5], with studies emphasizing the role of serotonin as a mediator of mood pathways. HGL diets increase insulin secretion, which can increase the proportion of tryptophan circulation to large neutral amino acids (LNAAs), and even promote transportation of tryptophan across the blood–brain barrier to predict brain serotonin synthesize [36]. Most studies have reported that HGL diets are accompanied with fatigue and have adverse effects on vitality, while our findings pertaining to vitality were different [37], which could be explained by insulin secretion and serotonin synthesis induced by HGL diet that can increase vitality [15]. HGL diets, compared to isoenergetic low glycemic load (LGL) diets, can increase glycogen storage within muscle and liver [38]. Indeed, higher glycogen may be related to feelings of being cheerful and postpone premature fatigue, which can increase vitality [39, 40]. Participants with HGI carbohydrate consumption, in contrast with participants in low GI categories, had lower intake of vitamin B12, vitamin D, and biotin, where these nutrients have been reported to positively effect the nervous system, and neurotransmitter transportation and synthesis [12,13,14]. Studies have shown that increases in the intake of vitamin B12 led to an improvement in QOL measures, which can be referred to emotional well-being [41]. Therefore the role of B12 in the RE can justify our results; across the GI categories, the RE has decreasing trends. We observed a significant negative association between QoL and GL, but not GI, among overweight and obese women, even after adjustment for confounders. Most studies support the notion that HGL diets can cause lower QoL by affecting mental and physical dysfunction, and inducing improper body shape and chronic disorders [5, 7, 15].

Our study has some limitations that should be noted. First, due to the cross-sectional design of this study, underlying causative factors cannot not be inferred. Second, this study was conducted on women only, which reduces the generalizability of the study results. Third, the sample size was not large enough to detect some relationships in this cross-sectional study. Fourth, FFQ and QoL questionnaires were self-report measures, which are susceptible to misreporting. Nevertheless, the strengths of the study were that all components of QoL were assessed, while other studies just examined one or two components in relation to carbohydrate quality. In addition, we used FFQ questionnaires specifically validated in the Iranian population. Another strength is that previous studies assessed the effect of carbohydrate quality with different components of QoL separately, while this original article aimed to evaluate the relationship between GI, GL, and all component of QoL in overweight and obese women, for the first time.


Based on our findings, a significant negative association was observed between QoL and GL, but not GI, among overweight and obese women. This finding highlights the importance of proper nutrition for QoL. However, more studies needed, particularly with cohort and RCT designs, to ameliorate the limitations of the present study.

Availability of data and materials

The data that support the findings of this study are available from correspond author but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of correspond author.



Body mass index


Bodily pain


Fasting blood glucose


Fat free mass


Fat mass


General health


Glycemic index


Glycemic load


Glycemic response


High-sensitive C-reactive protein


Food frequency


High glycemic load


Homeostasis model assessment


High-density lipoprotein


International physical activity questionnaire


Low glycemic load




Mental health


Physical activity


Physical functioning


Quality of life


Role emotional




Social functioning


Skeletal muscle mass


Total cholesterol






Waist circumference


Waist to hip ratio


World health organization


  1. Kushner RF, Foster GD. Obesity and quality of life. Nutrition. 2000;16(10):947–52.

    Article  CAS  PubMed  Google Scholar 

  2. Vanleerberghe P, De Witte N, Claes C, Schalock RL, Verté D. The quality of life of older people aging in place: a literature review. Qual Life Res. 2017;26(11):2899–907.

    Article  PubMed  Google Scholar 

  3. Group W, Group W, editors. What quality of life. World health forum; 1996.

  4. Alalwan TA, Perna S, Mandeel QA, Abdulhadi A, Alsayyad AS, D’Antona G, et al. Effects of daily low-dose date consumption on glycemic control, lipid profile, and quality of life in adults with pre-and type 2 diabetes: a randomized controlled trial. Nutrients. 2020;12(1):217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galilea-Zabalza I, Buil-Cosiales P, Salas-Salvado J, Toledo E, Ortega-Azorin C, Diez-Espino J, et al. Mediterranean diet and quality of life: Baseline cross-sectional analysis of the PREDIMED-PLUS trial. PLoS ONE. 2018;13(6):e0198974.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tulipan J, Kofler B. Implementation of a Low-Carbohydrate Diet Improves the Quality of Life of Cancer Patients–An Online Survey. Front Nutr. 2021;529:661253.

    Article  Google Scholar 

  7. Kazemi M, McBreairty LE, Zello GA, Pierson RA, Gordon JJ, Serrao SB, et al. A pulse-based diet and the Therapeutic Lifestyle Changes diet in combination with health counseling and exercise improve health-related quality of life in women with polycystic ovary syndrome: secondary analysis of a randomized controlled trial. J Psychosom Obstet Gynecol. 2020;41(2):144–53.

    Article  Google Scholar 

  8. Lugtenberg RT, de Groot S, Kaptein AA, Fischer MJ, Kranenbarg EM-K, Carpentier MD-d, et al. Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT (BOOG 2013–14) trial. Breast Cancer Res Treat. 2021;185(3):741–58.

    Article  CAS  PubMed  Google Scholar 

  9. Vega-López S, Venn BJ, Slavin JL. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients. 2018;10(10):1361.

  10. Triplitt CL. Examining the mechanisms of glucose regulation. Am J Manag Care. 2012;18(1):S4.

    PubMed  Google Scholar 

  11. Esfahani A, Wong JM, Mirrahimi A, Srichaikul K, Jenkins DJ, Kendall CW. The glycemic index: physiological significance. J Am Coll Nutr. 2009;28(sup4):439S-S445.

    Article  CAS  PubMed  Google Scholar 

  12. Arvidsson-Lenner R, Asp N-G, Axelsen M, Bryngelsson S, Haapa E, Järvi A, et al. Glycaemic index. Scand J Nutr. 2004;48(2):84–94.

    Article  Google Scholar 

  13. Vlachos D, Malisova S, Lindberg FA, Karaniki G. Glycemic index (GI) or glycemic load (GL) and dietary interventions for optimizing postprandial hyperglycemia in patients with T2 diabetes: A review. Nutrients. 2020;12(6):1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salmerón J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA. 1997;277(6):472–7.

    Article  PubMed  Google Scholar 

  15. Guldbrand H, Lindström T, Dizdar B, Bunjaku B, Östgren CJ, Nystrom F, et al. Randomization to a low-carbohydrate diet advice improves health related quality of life compared with a low-fat diet at similar weight-loss in Type 2 diabetes mellitus. Diabetes Res Clin Pract. 2014;106(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  16. Matthews DR, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  17. TspBC A. Body composition analyzer; BC-418. Instruction Manual. 2015.

  18. Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual: Human kinetics books; 1988.

  19. Aadahl M, Jørgensen T. Validation of a new self-report instrument for measuring physical activity. Med Sci Sports Exerc. 2003;35(7):1196–202.

    Article  PubMed  Google Scholar 

  20. Hosseini-Esfahani F, Asghari G, Mirmiran P, JalaliFarahani S, Azizi F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. Razi J Med Sci. 2010;17(71):41–55.

    Google Scholar 

  21. Ghaffarpour M, Houshiar-Rad A, Kianfar H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy. 1999;7(213):42–58.

  22. Wolever TM, Brand-Miller JC, Abernethy J, Astrup A, Atkinson F, Axelsen M, et al. Measuring the glycemic index of foods: interlaboratory study. Am J Clin Nutr. 2008;87(1):247S-S257.

    Article  CAS  PubMed  Google Scholar 

  23. Wolever TM, Yang M, Zeng XY, Atkinson F, Brand-Miller JC. Food glycemic index, as given in glycemic index tables, is a significant determinant of glycemic responses elicited by composite breakfast meals. Am J Clin Nutr. 2006;83(6):1306–12.

    Article  CAS  PubMed  Google Scholar 

  24. McHorney CA, Ware Jr JE, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Medical care. 1993;31(3):247-63.

  25. Kalantar-Zadeh K, Kopple JD, Block G, Humphreys MH. Association among SF36 quality of life measures and nutrition, hospitalization, and mortality in hemodialysis. J Am Soc Nephrol. 2001;12(12):2797–806.

    Article  PubMed  Google Scholar 

  26. Brazier JE, Harper R, Jones N, O’cathain A, Thomas K, Usherwood T, et al. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ. 1992;305(6846):160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arefnasab Z, Ghanei M, Noorbala AA, Alipour A, Babamahmoodi F, Babamahmoodi A, et al. Effect of mindfulness based stress reduction on quality of life (SF-36) and spirometry parameters, in chemically pulmonary injured veterans. Iran J Public Health. 2013;42(9):1026.

    PubMed  PubMed Central  Google Scholar 

  28. Lins L, Carvalho FM. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE open medicine. 2016;4:2050312116671725.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jalilpiran Y, Mozaffari H, Askari M, Jafari A, Azadbakht L. The association between Healthy Beverage Index and anthropometric measures among children: a cross-sectional study. Eating and weight disorders : EWD. 2021;26(5):1437–45.

    Article  PubMed  Google Scholar 

  30. Farazi M, Jayedi A, Noruzi Z, Firouzabadi FD, Asgari E, Djafarian K, et al. The association between carbohydrate quality index and nutrient adequacy in Iranian adults. Nutrition & Food Science. 2021.

  31. Allison PJ, Locker D, Feine JS. Quality of life: a dynamic construct. Soc Sci Med. 1997;45(2):221–30.

    Article  CAS  PubMed  Google Scholar 

  32. Carr AJ, Gibson B, Robinson PG. Is quality of life determined by expectations or experience? BMJ. 2001;322(7296):1240–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saadati N, Haidari F, Barati M, Nikbakht R, Mirmomeni G, Rahim F. The effect of low glycemic index diet on the reproductive and clinical profile in women with polycystic ovarian syndrome: A systematic review and meta-analysis. Heliyon. 2021;7(11):e08338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghodoosi N, Arghavani H, Mirzababaei A, Yekaninejad MS, Keshavarz SA, Imani H. The Relationship between Energy-Adjusted Dietary Inflammatory Index (E-DII) with Quality of Life and Inflammatory Markers among Overweight and Obese Iranian Women. 2020.

  35. Evans CE, Greenwood DC, Threapleton DE, Gale CP, Cleghorn CL, Burley VJ. Glycemic index, glycemic load, and blood pressure: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2017;105(5):1176–90.

    Article  CAS  PubMed  Google Scholar 

  36. Dunner DL, Goodwin FK. Effect of L-tryptophan on brain serotonin metabolism in depressed patients. Arch Gen Psychiatry. 1972;26(4):364–6.

    Article  CAS  PubMed  Google Scholar 

  37. Breymeyer KL, Lampe JW, McGregor BA, Neuhouser ML. Subjective mood and energy levels of healthy weight and overweight/obese healthy adults on high-and low-glycemic load experimental diets. Appetite. 2016;107:253–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smith RN, Braue A, Varigos GA, Mann NJ. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J Dermatol Sci. 2008;50(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  39. Giessing J, Eichmann B, Kemmler W, Westcott WL, Winett R, Busuttil K, et al. The effects of adding high-intensity of effort resistance training to routine care in persons with type II diabetes: An exploratory randomized parallel-group time-series study. Physiol Behav. 2022;245:113677.

    Article  CAS  PubMed  Google Scholar 

  40. Kirwan JP, O’Gorman D, Evans WJ. A moderate glycemic meal before endurance exercise can enhance performance. J Appl Physiol. 1998;84(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  41. Pietro KJ, Jensen AM, Schumacher JR, Anderson JW. Vitamin B12 intake correlated to physical and mental improvements in multiple sclerosis specific quality of life. Int J Adv Nutr Health Sci. 2014;2:98–108.

    Google Scholar 

Download references


The authors thank the laboratory of Nutrition Sciences and Dietetics in Tehran University of Medical Sciences (TUMS). We are grateful to all of the participants for their contribution to this research. This study was approved by the Research ethics committee of the Tehran University of Medical Sciences (TUMS), Tehran, Iran with ethics number IR.TUMS.MEDICINE.REC.1399.636. All participants signed a written informed consent that was approved by this committee prior to enrollment in the study.

Sources of Support

Tehran University of Medical Sciences.


This study was supported by TUMS and grant ID was 99–3212-51715.

Author information

Authors and Affiliations



Niloufar Rasaei and Khadijeh Mirzaei designed the search; Niloufar Rasaei and Khadijeh Mirzaei conducted the sampling; Niloufar Rasaei performed statistical analysis; Melika Fallah, Fatemeh Gholami, Mehdi Karimi, Sahar Noori, Niki Bahrampour, Cain Clark and Khadijeh Mirzaei wrote the paper, Khadijeh Mirzaei primary responsibility for final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Khadijeh Mirzaei.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Research ethics committee of the Tehran University of Medical Sciences (TUMS), Tehran, Iran with ethics number IR.TUMS.MEDICINE.REC.1399.636. Each participant was informed completely regarding the study protocol, the objectives of the study were explained to them. All participants signed a written informed consent that was approved by this committee prior to enrollment in the study. Privacy and confidentiality were maintained. All methods were performed in accordance with the relevant guidelines.

Consent for publication


Competing interests

There are no competing financial interests in relation to the current study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasaei, N., Fallah, M., Gholami, F. et al. The association between glycemic index and glycemic load and quality of life among overweight and obese women: a cross-sectional study. BMC Nutr 9, 30 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: