Paeratakul S, Popkin BM, Kohlmeier L, Hertz-Picciotto I, Guo X, Edwards LJ. Measurement error in dietary data: implications for the epidemiologic study of the diet-disease relationship. Eur J Clin Nutr. 1998;52:722–7.
Article
CAS
PubMed
Google Scholar
IH R. Dietary intake measurements. Public Health Nutr. 2005;8:1100–7.
Google Scholar
AE B, Bingham SA WAF, SA B. Validation of dietary intakes measured by diet history against 24 h urinary nitrogen excretion and energy expenditure measured by the doubly-labelled water method in middle-aged women. Br J Nutr. 2000;83:341–54.
Article
Google Scholar
Lutomski JE, van den Broeck J, Harrington J, Shiely F, Perry IJ. Sociodemographic, lifestyle, mental health and dietary factors associated with direction of misreporting of energy intake. Public Health Nutr. 2011;14:532–41. 510.1017/S1368980010001801.
Article
PubMed
Google Scholar
Johansson G, Wikman A, Ahren AM, Hallmans G, Johansson I. Underreporting of energy intake in repeated 24-h recalls related to gender, age, weight status, day of interview, educational level, reported food intake, smoking habits and area of living. Public Health Nutr. 2001;4:919–27.
Article
CAS
PubMed
Google Scholar
Hill RJ, Davies PS. The validity of self-reported energy intake as determined using the doubly labelled water technique. Br J Nutr. 2001;85:415–30.
Article
CAS
PubMed
Google Scholar
Schoeller DA. Limitations in the assessment of dietary energy intake by self-report. Metabolism. 1995;44:18–22.
Article
CAS
PubMed
Google Scholar
Trabulsi J, Schoeller DA. Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am J Physiol Endocrinol Metab. 2001;281:E891–899.
CAS
PubMed
Google Scholar
Schoeller DA. Measurement of energy expenditure in free-living humans by using doubly labeled water. J Nutr. 1988;118:1278–89.
CAS
PubMed
Google Scholar
Isaksson B. Urinary nitrogen output as a validity test in dietary surveys. Am J Clin Nutr. 1980;33:4–5.
CAS
PubMed
Google Scholar
Holbrook JT, Patterson KY, Bodner JE, Douglas LW, Veillon C, Kelsay JL, Mertz W, Smith Jr JC. Sodium and potassium intake and balance in adults consuming self-selected diets. Am J Clin Nutr. 1984;40:786–93.
CAS
PubMed
Google Scholar
Tasevska N, Runswick SA, Bingham SA. Urinary potassium is as reliable as urinary nitrogen for use as a recovery biomarker in dietary studies of free living individuals. J Nutr. 2006;136:1334–40.
PubMed
Google Scholar
Jenab M, Slimani N, Bictash M, Ferrari P, Bingham S. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet. 2009;125:507–25.
Article
PubMed
Google Scholar
Block G, Patterson B, Subar A. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer. 1992;18:1–29.
Article
CAS
PubMed
Google Scholar
Norat T, Aune D, Chan D, Romaguera D. Fruits and vegetables: updating the epidemiologic evidence for the WCRF/AICR lifestyle recommendations for cancer prevention. Cancer Treat Res. 2014;159:35–50.
Article
CAS
PubMed
Google Scholar
Cho SS, Qi L, Fahey Jr GC, Klurfeld DM. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr. 2013;98:594–619.
Article
CAS
PubMed
Google Scholar
Maiani G, Caston MJ, Catasta G, Toti E, Cambrodon IG, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, et al. Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res. 2009;53 Suppl 2:S194–218.
Article
PubMed
Google Scholar
Baldrick FR, Woodside JV, Elborn JS, Young IS, McKinley MC. Biomarkers of fruit and vegetable intake in human intervention studies: a systematic review. Crit Rev Food Sci Nutr. 2011;51:795–815.
Article
CAS
PubMed
Google Scholar
Landberg R, Kamal-Eldin A, Andersson A, Vessby B, Aman P. Alkylresorcinols as biomarkers of whole-grain wheat and rye intake: plasma concentration and intake estimated from dietary records. Am J Clin Nutr. 2008;87:832–8.
CAS
PubMed
Google Scholar
Landberg R, Aman P, Friberg LE, Vessby B, Adlercreutz H, Kamal-Eldin A. Dose response of whole-grain biomarkers: alkylresorcinols in human plasma and their metabolites in urine in relation to intake. Am J Clin Nutr. 2009;89:290–6.
Article
CAS
PubMed
Google Scholar
Ross AB, Kamal-Eldin A, Aman P. Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole-grain wheat- and rye-rich foods. Nutr Rev. 2004;62:81–95.
Article
PubMed
Google Scholar
Chen Y, Ross AB, Aman P, Kamal-Eldin A. Alkylresorcinols as markers of whole grain wheat and rye in cereal products. J Agric Food Chem. 2004;52:8242–6.
Article
CAS
PubMed
Google Scholar
Knudsen MD, Kyro C, Olsen A, Dragsted LO, Skeie G, Lund E, Aman P, Nilsson LM, Bueno-de-Mesquita HB, Tjonneland A, Landberg R. Self-reported whole-grain intake and plasma alkylresorcinol concentrations in combination in relation to the incidence of colorectal cancer. Am J Epidemiol. 2014;179:1188–96.
Drake I, Sonestedt E, Gullberg B, Bjartell A, Olsson H, Adlercreutz H, Tikkanen MJ, Wirfalt E, Wallstrom P. Plasma alkylresorcinol metabolites as biomarkers for whole-grain intake and their association with prostate cancer: a Swedish nested case–control study. Cancer Epidemiol Biomarkers Prev. 2014;23:73–83.
Article
CAS
PubMed
Google Scholar
Ross AB, Bourgeois A, Macharia HN, Kochhar S, Jebb SA, Brownlee IA, Seal CJ. Plasma alkylresorcinols as a biomarker of whole-grain food consumption in a large population: results from the WHOLEheart Intervention Study. Am J Clin Nutr. 2012;95:204–11.
Article
CAS
PubMed
Google Scholar
Riksmaten – vuxna 2010–2011. Livsmedels- och näringsintag bland vuxna I Sverige [http://www.livsmedelsverket.se/globalassets/rapporter/2014/riksmaten-vuxna-2010-11-metodrapport--rapport-8---2014.pdf]. Accessed 05 May 2014.
Christensen SE, Moller E, Bonn SE, Ploner A, Wright A, Sjolander A, Balter O, Lissner L, Balter K. Two new meal- and web-based interactive food frequency questionnaires: validation of energy and macronutrient intake. J Med Internet Res. 2013;15:e109.
Article
PubMed
PubMed Central
Google Scholar
Christensen SE, Moller E, Bonn SE, Ploner A, Balter O, Lissner L, Balter K. Relative validity of micronutrient and fiber intake assessed with two new interactive meal- and Web-based food frequency questionnaires. J Med Internet Res. 2014;16:e59.
Article
PubMed
PubMed Central
Google Scholar
Nybacka S, Forslund HB, Wirfält E, Larsson I, Ericson U, Lemming EW, Bergström G, Hedblad B, Winkvist A, Lindroos AK. Comparison of a web-based food record tool and a food frequency questionnaire and objective validation using the doubly labeled water technique in a Swedish middle-aged population. Journal of Nutritional Science 2016, In Press.
Bergstrom G, Berglund G, Blomberg A, Brandberg J, Engstrom G, Engvall J, Eriksson M, de Faire U, Flinck A, Hansson MG, et al. The Swedish CArdioPulmonary BioImage Study: objectives and design. J Intern Med. 2015;278(6):645-59. doi:10.1111/joim.12384.
The food database [http://www.livsmedelsverket.se/en/food-and-content/naringsamnen/livsmedelsdatabasen/]. Accessed 19 Aug 2014.
Landberg R, Man P, Kamal-Eldin A. A rapid gas chromatography–mass spectrometry method for quantification of alkylresorcinols in human plasma. Anal Biochem. 2009;385:7–12.
Article
CAS
PubMed
Google Scholar
Ocke MC, Kaaks RJ. Biochemical markers as additional measurements in dietary validity studies: application of the method of triads with examples from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 1997;65:1240s–5s.
CAS
PubMed
Google Scholar
Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med. 2000;19:1141–64.
Article
CAS
PubMed
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. 2008. http://www.R-project.org.
Serra-Majem L, Frost Andersen L, Henrique-Sanchez P, Doreste-Alonso J, Sanchez-Villegas A, Ortiz-Andrelluchi A, Negri E, La Vecchia C. Evaluating the quality of dietary intake validation studies. Br J Nutr. 2009;102 Suppl 1:S3–9.
Article
CAS
PubMed
Google Scholar
Kipnis V, Midthune D, Freedman L, Bingham S, Day NE, Riboli E, Ferrari P, Carroll RJ. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 2002;5:915–23.
Article
PubMed
Google Scholar
Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, Bingham S, Schoeller DA, Schatzkin A, Carroll RJ. Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol. 2003;158:14–21. discussion 22–16.
Article
PubMed
Google Scholar
Kaaks R, Ferrari P, Ciampi A, Plummer M, Riboli E. Uses and limitations of statistical accounting for random error correlations, in the validation of dietary questionnaire assessments. Public Health Nutr. 2002;5:969–76.
Article
PubMed
Google Scholar
Campbell DR, Gross MD, Martini MC, Grandits GA, Slavin JL, Potter JD. Plasma carotenoids as biomarkers of vegetable and fruit intake. Cancer Epidemiol Biomarkers Prev. 1994;3:493–500.
CAS
PubMed
Google Scholar
Jansen MC, Van Kappel AL, Ocke MC, Van’t Veer P, Boshuizen HC, Riboli E, Bueno-de-Mesquita HB. Plasma carotenoid levels in Dutch men and women, and the relation with vegetable and fruit consumption. Eur J Clin Nutr. 2004;58:1386–95.
Article
CAS
PubMed
Google Scholar
Burrows TL, Hutchesson MJ, Rollo ME, Boggess MM, Guest M, Collins CE. Fruit and vegetable intake assessed by food frequency questionnaire and plasma carotenoids: a validation study in adults. Nutrients. 2015;7:3240–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pennant M, Steur M, Moore C, Butterworth A, Johnson L. Comparative validity of vitamin C and carotenoids as indicators of fruit and vegetable intake: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr. 2015;114(9):1331–40. doi:10.1017/S0007114515003165.
Borel P, Desmarchelier C, Nowicki M, Bott R. Lycopene bioavailability is associated with a combination of genetic variants. Free Radic Biol Med. 2015;83:238–44.
Article
CAS
PubMed
Google Scholar
Moran NE, Erdman Jr JW, Clinton SK. Complex interactions between dietary and genetic factors impact lycopene metabolism and distribution. Arch Biochem Biophys. 2013;539:171–80.
Article
CAS
PubMed
Google Scholar
Resnicow K, Odom E, Wang T, Dudley WN, Mitchell D, Vaughan R, Jackson A, Baranowski T. Validation of Three Food Frequency Questionnaires and 24-h Recalls with Serum Carotenoid Levels in a Sample of African-American Adults. Am J Epidemiol. 2000;152:1072–80.
Article
CAS
PubMed
Google Scholar
Kristal AR, Vizenor NC, Patterson RE, Neuhouser ML, Shattuck AL, McLerran D. Precision and bias of food frequency-based measures of fruit and vegetable intakes. Cancer Epidemiol Biomarkers Prev. 2000;9:939–44.
CAS
PubMed
Google Scholar
Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL, Schwartz SJ, White WS. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr. 2004;80:396–403.
CAS
PubMed
Google Scholar
Faulks RM, Southon S. Challenges to understanding and measuring carotenoid bioavailability. Biochim Biophys Acta. 2005;1740:95–100.
Article
CAS
PubMed
Google Scholar
Linko AM, Juntunen KS, Mykkanen HM, Adlercreutz H. Whole-grain rye bread consumption by women correlates with plasma alkylresorcinols and increases their concentration compared with low-fiber wheat bread. J Nutr. 2005;135:580–3.
CAS
PubMed
Google Scholar
Landberg R, Kamal-Eldin A, Aman P, Christensen J, Overvad K, Tjonneland A, Olsen A. Determinants of plasma alkylresorcinol concentration in Danish post-menopausal women. Eur J Clin Nutr. 2011;65:94–101.
Article
CAS
PubMed
Google Scholar